Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\times 2\sqrt{5}-\sqrt{\frac{20}{3}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
4\sqrt{5}-\sqrt{\frac{20}{3}}
Multiply 2 and 2 to get 4.
4\sqrt{5}-\frac{\sqrt{20}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{20}{3}} as the division of square roots \frac{\sqrt{20}}{\sqrt{3}}.
4\sqrt{5}-\frac{2\sqrt{5}}{\sqrt{3}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
4\sqrt{5}-\frac{2\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4\sqrt{5}-\frac{2\sqrt{5}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
4\sqrt{5}-\frac{2\sqrt{15}}{3}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{3\times 4\sqrt{5}}{3}-\frac{2\sqrt{15}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\sqrt{5} times \frac{3}{3}.
\frac{3\times 4\sqrt{5}-2\sqrt{15}}{3}
Since \frac{3\times 4\sqrt{5}}{3} and \frac{2\sqrt{15}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{12\sqrt{5}-2\sqrt{15}}{3}
Do the multiplications in 3\times 4\sqrt{5}-2\sqrt{15}.