Evaluate
\frac{10\sqrt{3}}{3}\approx 5.773502692
Share
Copied to clipboard
10\sqrt{2}\sqrt{\frac{1}{6}}
Multiply 2 and 5 to get 10.
10\sqrt{2}\times \frac{\sqrt{1}}{\sqrt{6}}
Rewrite the square root of the division \sqrt{\frac{1}{6}} as the division of square roots \frac{\sqrt{1}}{\sqrt{6}}.
10\sqrt{2}\times \frac{1}{\sqrt{6}}
Calculate the square root of 1 and get 1.
10\sqrt{2}\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
10\sqrt{2}\times \frac{\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{10\sqrt{6}}{6}\sqrt{2}
Express 10\times \frac{\sqrt{6}}{6} as a single fraction.
\frac{5}{3}\sqrt{6}\sqrt{2}
Divide 10\sqrt{6} by 6 to get \frac{5}{3}\sqrt{6}.
\frac{5}{3}\sqrt{2}\sqrt{3}\sqrt{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{5}{3}\times 2\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{5\times 2}{3}\sqrt{3}
Express \frac{5}{3}\times 2 as a single fraction.
\frac{10}{3}\sqrt{3}
Multiply 5 and 2 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}