Evaluate
7\sqrt{5}\approx 15.652475842
Share
Copied to clipboard
2\times 6\sqrt{5}-14\sqrt{20}+10\sqrt{45}-\sqrt{245}
Factor 180=6^{2}\times 5. Rewrite the square root of the product \sqrt{6^{2}\times 5} as the product of square roots \sqrt{6^{2}}\sqrt{5}. Take the square root of 6^{2}.
12\sqrt{5}-14\sqrt{20}+10\sqrt{45}-\sqrt{245}
Multiply 2 and 6 to get 12.
12\sqrt{5}-14\times 2\sqrt{5}+10\sqrt{45}-\sqrt{245}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
12\sqrt{5}-28\sqrt{5}+10\sqrt{45}-\sqrt{245}
Multiply -14 and 2 to get -28.
-16\sqrt{5}+10\sqrt{45}-\sqrt{245}
Combine 12\sqrt{5} and -28\sqrt{5} to get -16\sqrt{5}.
-16\sqrt{5}+10\times 3\sqrt{5}-\sqrt{245}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
-16\sqrt{5}+30\sqrt{5}-\sqrt{245}
Multiply 10 and 3 to get 30.
14\sqrt{5}-\sqrt{245}
Combine -16\sqrt{5} and 30\sqrt{5} to get 14\sqrt{5}.
14\sqrt{5}-7\sqrt{5}
Factor 245=7^{2}\times 5. Rewrite the square root of the product \sqrt{7^{2}\times 5} as the product of square roots \sqrt{7^{2}}\sqrt{5}. Take the square root of 7^{2}.
7\sqrt{5}
Combine 14\sqrt{5} and -7\sqrt{5} to get 7\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}