Solve for x
x=405
Graph
Share
Copied to clipboard
4\sqrt{180}-\sqrt{180}=2\sqrt{x}
Multiply both sides of the equation by 2.
4\times 6\sqrt{5}-\sqrt{180}=2\sqrt{x}
Factor 180=6^{2}\times 5. Rewrite the square root of the product \sqrt{6^{2}\times 5} as the product of square roots \sqrt{6^{2}}\sqrt{5}. Take the square root of 6^{2}.
24\sqrt{5}-\sqrt{180}=2\sqrt{x}
Multiply 4 and 6 to get 24.
24\sqrt{5}-6\sqrt{5}=2\sqrt{x}
Factor 180=6^{2}\times 5. Rewrite the square root of the product \sqrt{6^{2}\times 5} as the product of square roots \sqrt{6^{2}}\sqrt{5}. Take the square root of 6^{2}.
2\sqrt{x}=24\sqrt{5}-6\sqrt{5}
Swap sides so that all variable terms are on the left hand side.
2\sqrt{x}=18\sqrt{5}
Combine 24\sqrt{5} and -6\sqrt{5} to get 18\sqrt{5}.
\frac{2\sqrt{x}}{2}=\frac{18\sqrt{5}}{2}
Divide both sides by 2.
\sqrt{x}=\frac{18\sqrt{5}}{2}
Dividing by 2 undoes the multiplication by 2.
\sqrt{x}=9\sqrt{5}
Divide 18\sqrt{5} by 2.
x=405
Square both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}