Evaluate
4\left(\sqrt{3}+\sqrt{6}\right)\approx 16.726162201
Factor
4 {(\sqrt{3} + \sqrt{6})} = 16.726162201
Share
Copied to clipboard
2\times 2\sqrt{3}+\frac{4\sqrt{18}}{\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
4\sqrt{3}+\frac{4\sqrt{18}}{\sqrt{3}}
Multiply 2 and 2 to get 4.
4\sqrt{3}+\frac{4\times 3\sqrt{2}}{\sqrt{3}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
4\sqrt{3}+\frac{12\sqrt{2}}{\sqrt{3}}
Multiply 4 and 3 to get 12.
4\sqrt{3}+\frac{12\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{12\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4\sqrt{3}+\frac{12\sqrt{2}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
4\sqrt{3}+\frac{12\sqrt{6}}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
4\sqrt{3}+4\sqrt{6}
Divide 12\sqrt{6} by 3 to get 4\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}