Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\times \frac{\sqrt{1}}{\sqrt{27}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Rewrite the square root of the division \sqrt{\frac{1}{27}} as the division of square roots \frac{\sqrt{1}}{\sqrt{27}}.
2\times \frac{1}{\sqrt{27}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Calculate the square root of 1 and get 1.
2\times \frac{1}{3\sqrt{3}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
2\times \frac{\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Rationalize the denominator of \frac{1}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\times \frac{\sqrt{3}}{3\times 3}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
The square of \sqrt{3} is 3.
2\times \frac{\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Multiply 3 and 3 to get 9.
\frac{2\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Express 2\times \frac{\sqrt{3}}{9} as a single fraction.
\frac{2\sqrt{3}}{9}-\frac{2}{3}\times 3\sqrt{2}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Cancel out 3 and 3.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{\sqrt{4}}{\sqrt{3}}+4\sqrt{\frac{1}{2}}
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2}{\sqrt{3}}+4\sqrt{\frac{1}{2}}
Calculate the square root of 4 and get 2.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+4\sqrt{\frac{1}{2}}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\sqrt{\frac{1}{2}}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{\sqrt{1}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{1}{\sqrt{2}}
Calculate the square root of 1 and get 1.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+2\sqrt{2}
Cancel out 2, the greatest common factor in 4 and 2.
\frac{2\sqrt{3}}{9}-\frac{2\sqrt{3}}{3}
Combine -2\sqrt{2} and 2\sqrt{2} to get 0.
\frac{2\sqrt{3}}{9}-\frac{3\times 2\sqrt{3}}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 3 is 9. Multiply \frac{2\sqrt{3}}{3} times \frac{3}{3}.
\frac{2\sqrt{3}-3\times 2\sqrt{3}}{9}
Since \frac{2\sqrt{3}}{9} and \frac{3\times 2\sqrt{3}}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{3}-6\sqrt{3}}{9}
Do the multiplications in 2\sqrt{3}-3\times 2\sqrt{3}.
\frac{-4\sqrt{3}}{9}
Do the calculations in 2\sqrt{3}-6\sqrt{3}.