Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\sqrt{x-2}=8-4\sqrt{2x-1}
Subtract 4\sqrt{2x-1} from both sides of the equation.
\left(2\sqrt{x-2}\right)^{2}=\left(8-4\sqrt{2x-1}\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x-2}\right)^{2}=\left(8-4\sqrt{2x-1}\right)^{2}
Expand \left(2\sqrt{x-2}\right)^{2}.
4\left(\sqrt{x-2}\right)^{2}=\left(8-4\sqrt{2x-1}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x-2\right)=\left(8-4\sqrt{2x-1}\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
4x-8=\left(8-4\sqrt{2x-1}\right)^{2}
Use the distributive property to multiply 4 by x-2.
4x-8=64-64\sqrt{2x-1}+16\left(\sqrt{2x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-4\sqrt{2x-1}\right)^{2}.
4x-8=64-64\sqrt{2x-1}+16\left(2x-1\right)
Calculate \sqrt{2x-1} to the power of 2 and get 2x-1.
4x-8=64-64\sqrt{2x-1}+32x-16
Use the distributive property to multiply 16 by 2x-1.
4x-8=48-64\sqrt{2x-1}+32x
Subtract 16 from 64 to get 48.
4x-8-\left(48+32x\right)=-64\sqrt{2x-1}
Subtract 48+32x from both sides of the equation.
4x-8-48-32x=-64\sqrt{2x-1}
To find the opposite of 48+32x, find the opposite of each term.
4x-56-32x=-64\sqrt{2x-1}
Subtract 48 from -8 to get -56.
-28x-56=-64\sqrt{2x-1}
Combine 4x and -32x to get -28x.
\left(-28x-56\right)^{2}=\left(-64\sqrt{2x-1}\right)^{2}
Square both sides of the equation.
784x^{2}+3136x+3136=\left(-64\sqrt{2x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-28x-56\right)^{2}.
784x^{2}+3136x+3136=\left(-64\right)^{2}\left(\sqrt{2x-1}\right)^{2}
Expand \left(-64\sqrt{2x-1}\right)^{2}.
784x^{2}+3136x+3136=4096\left(\sqrt{2x-1}\right)^{2}
Calculate -64 to the power of 2 and get 4096.
784x^{2}+3136x+3136=4096\left(2x-1\right)
Calculate \sqrt{2x-1} to the power of 2 and get 2x-1.
784x^{2}+3136x+3136=8192x-4096
Use the distributive property to multiply 4096 by 2x-1.
784x^{2}+3136x+3136-8192x=-4096
Subtract 8192x from both sides.
784x^{2}-5056x+3136=-4096
Combine 3136x and -8192x to get -5056x.
784x^{2}-5056x+3136+4096=0
Add 4096 to both sides.
784x^{2}-5056x+7232=0
Add 3136 and 4096 to get 7232.
x=\frac{-\left(-5056\right)±\sqrt{\left(-5056\right)^{2}-4\times 784\times 7232}}{2\times 784}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 784 for a, -5056 for b, and 7232 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5056\right)±\sqrt{25563136-4\times 784\times 7232}}{2\times 784}
Square -5056.
x=\frac{-\left(-5056\right)±\sqrt{25563136-3136\times 7232}}{2\times 784}
Multiply -4 times 784.
x=\frac{-\left(-5056\right)±\sqrt{25563136-22679552}}{2\times 784}
Multiply -3136 times 7232.
x=\frac{-\left(-5056\right)±\sqrt{2883584}}{2\times 784}
Add 25563136 to -22679552.
x=\frac{-\left(-5056\right)±512\sqrt{11}}{2\times 784}
Take the square root of 2883584.
x=\frac{5056±512\sqrt{11}}{2\times 784}
The opposite of -5056 is 5056.
x=\frac{5056±512\sqrt{11}}{1568}
Multiply 2 times 784.
x=\frac{512\sqrt{11}+5056}{1568}
Now solve the equation x=\frac{5056±512\sqrt{11}}{1568} when ± is plus. Add 5056 to 512\sqrt{11}.
x=\frac{16\sqrt{11}+158}{49}
Divide 5056+512\sqrt{11} by 1568.
x=\frac{5056-512\sqrt{11}}{1568}
Now solve the equation x=\frac{5056±512\sqrt{11}}{1568} when ± is minus. Subtract 512\sqrt{11} from 5056.
x=\frac{158-16\sqrt{11}}{49}
Divide 5056-512\sqrt{11} by 1568.
x=\frac{16\sqrt{11}+158}{49} x=\frac{158-16\sqrt{11}}{49}
The equation is now solved.
2\sqrt{\frac{16\sqrt{11}+158}{49}-2}+4\sqrt{2\times \frac{16\sqrt{11}+158}{49}-1}=8
Substitute \frac{16\sqrt{11}+158}{49} for x in the equation 2\sqrt{x-2}+4\sqrt{2x-1}=8.
\frac{8}{7}\times 11^{\frac{1}{2}}+\frac{72}{7}=8
Simplify. The value x=\frac{16\sqrt{11}+158}{49} does not satisfy the equation.
2\sqrt{\frac{158-16\sqrt{11}}{49}-2}+4\sqrt{2\times \frac{158-16\sqrt{11}}{49}-1}=8
Substitute \frac{158-16\sqrt{11}}{49} for x in the equation 2\sqrt{x-2}+4\sqrt{2x-1}=8.
8=8
Simplify. The value x=\frac{158-16\sqrt{11}}{49} satisfies the equation.
x=\frac{158-16\sqrt{11}}{49}
Equation 2\sqrt{x-2}=-4\sqrt{2x-1}+8 has a unique solution.