Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{n^{2}+n-12}\right)^{2}=\left(50-2n\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{n^{2}+n-12}\right)^{2}=\left(50-2n\right)^{2}
Expand \left(2\sqrt{n^{2}+n-12}\right)^{2}.
4\left(\sqrt{n^{2}+n-12}\right)^{2}=\left(50-2n\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(n^{2}+n-12\right)=\left(50-2n\right)^{2}
Calculate \sqrt{n^{2}+n-12} to the power of 2 and get n^{2}+n-12.
4n^{2}+4n-48=\left(50-2n\right)^{2}
Use the distributive property to multiply 4 by n^{2}+n-12.
4n^{2}+4n-48=2500-200n+4n^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(50-2n\right)^{2}.
4n^{2}+4n-48+200n=2500+4n^{2}
Add 200n to both sides.
4n^{2}+204n-48=2500+4n^{2}
Combine 4n and 200n to get 204n.
4n^{2}+204n-48-4n^{2}=2500
Subtract 4n^{2} from both sides.
204n-48=2500
Combine 4n^{2} and -4n^{2} to get 0.
204n=2500+48
Add 48 to both sides.
204n=2548
Add 2500 and 48 to get 2548.
n=\frac{2548}{204}
Divide both sides by 204.
n=\frac{637}{51}
Reduce the fraction \frac{2548}{204} to lowest terms by extracting and canceling out 4.
2\sqrt{\left(\frac{637}{51}\right)^{2}+\frac{637}{51}-12}=50-2\times \frac{637}{51}
Substitute \frac{637}{51} for n in the equation 2\sqrt{n^{2}+n-12}=50-2n.
\frac{1276}{51}=\frac{1276}{51}
Simplify. The value n=\frac{637}{51} satisfies the equation.
n=\frac{637}{51}
Equation 2\sqrt{n^{2}+n-12}=50-2n has a unique solution.