Solve for n
n = \frac{637}{51} = 12\frac{25}{51} \approx 12.490196078
Share
Copied to clipboard
\left(2\sqrt{n^{2}+n-12}\right)^{2}=\left(50-2n\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{n^{2}+n-12}\right)^{2}=\left(50-2n\right)^{2}
Expand \left(2\sqrt{n^{2}+n-12}\right)^{2}.
4\left(\sqrt{n^{2}+n-12}\right)^{2}=\left(50-2n\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(n^{2}+n-12\right)=\left(50-2n\right)^{2}
Calculate \sqrt{n^{2}+n-12} to the power of 2 and get n^{2}+n-12.
4n^{2}+4n-48=\left(50-2n\right)^{2}
Use the distributive property to multiply 4 by n^{2}+n-12.
4n^{2}+4n-48=2500-200n+4n^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(50-2n\right)^{2}.
4n^{2}+4n-48+200n=2500+4n^{2}
Add 200n to both sides.
4n^{2}+204n-48=2500+4n^{2}
Combine 4n and 200n to get 204n.
4n^{2}+204n-48-4n^{2}=2500
Subtract 4n^{2} from both sides.
204n-48=2500
Combine 4n^{2} and -4n^{2} to get 0.
204n=2500+48
Add 48 to both sides.
204n=2548
Add 2500 and 48 to get 2548.
n=\frac{2548}{204}
Divide both sides by 204.
n=\frac{637}{51}
Reduce the fraction \frac{2548}{204} to lowest terms by extracting and canceling out 4.
2\sqrt{\left(\frac{637}{51}\right)^{2}+\frac{637}{51}-12}=50-2\times \frac{637}{51}
Substitute \frac{637}{51} for n in the equation 2\sqrt{n^{2}+n-12}=50-2n.
\frac{1276}{51}=\frac{1276}{51}
Simplify. The value n=\frac{637}{51} satisfies the equation.
n=\frac{637}{51}
Equation 2\sqrt{n^{2}+n-12}=50-2n has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}