Solve for x
x=4
Graph
Share
Copied to clipboard
2\sqrt{9x}=10-2\sqrt{x}+6
Subtract -6 from both sides of the equation.
\left(2\sqrt{9x}\right)^{2}=\left(10-2\sqrt{x}+6\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{9x}\right)^{2}=\left(10-2\sqrt{x}+6\right)^{2}
Expand \left(2\sqrt{9x}\right)^{2}.
4\left(\sqrt{9x}\right)^{2}=\left(10-2\sqrt{x}+6\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\times 9x=\left(10-2\sqrt{x}+6\right)^{2}
Calculate \sqrt{9x} to the power of 2 and get 9x.
36x=\left(10-2\sqrt{x}+6\right)^{2}
Multiply 4 and 9 to get 36.
36x=\left(10-2\sqrt{x}\right)^{2}+12\left(10-2\sqrt{x}\right)+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10-2\sqrt{x}+6\right)^{2}.
36x-\left(10-2\sqrt{x}\right)^{2}=12\left(10-2\sqrt{x}\right)+36
Subtract \left(10-2\sqrt{x}\right)^{2} from both sides.
36x-\left(10-2\sqrt{x}\right)^{2}-12\left(10-2\sqrt{x}\right)=36
Subtract 12\left(10-2\sqrt{x}\right) from both sides.
36x-\left(100-40\sqrt{x}+4\left(\sqrt{x}\right)^{2}\right)-12\left(10-2\sqrt{x}\right)=36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-2\sqrt{x}\right)^{2}.
36x-\left(100-40\sqrt{x}+4x\right)-12\left(10-2\sqrt{x}\right)=36
Calculate \sqrt{x} to the power of 2 and get x.
36x-100+40\sqrt{x}-4x-12\left(10-2\sqrt{x}\right)=36
To find the opposite of 100-40\sqrt{x}+4x, find the opposite of each term.
32x-100+40\sqrt{x}-12\left(10-2\sqrt{x}\right)=36
Combine 36x and -4x to get 32x.
32x-100+40\sqrt{x}-120+24\sqrt{x}=36
Use the distributive property to multiply -12 by 10-2\sqrt{x}.
32x-220+40\sqrt{x}+24\sqrt{x}=36
Subtract 120 from -100 to get -220.
32x-220+64\sqrt{x}=36
Combine 40\sqrt{x} and 24\sqrt{x} to get 64\sqrt{x}.
32x+64\sqrt{x}=36+220
Add 220 to both sides.
32x+64\sqrt{x}=256
Add 36 and 220 to get 256.
64\sqrt{x}=256-32x
Subtract 32x from both sides of the equation.
\left(64\sqrt{x}\right)^{2}=\left(-32x+256\right)^{2}
Square both sides of the equation.
64^{2}\left(\sqrt{x}\right)^{2}=\left(-32x+256\right)^{2}
Expand \left(64\sqrt{x}\right)^{2}.
4096\left(\sqrt{x}\right)^{2}=\left(-32x+256\right)^{2}
Calculate 64 to the power of 2 and get 4096.
4096x=\left(-32x+256\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
4096x=1024x^{2}-16384x+65536
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-32x+256\right)^{2}.
4096x-1024x^{2}=-16384x+65536
Subtract 1024x^{2} from both sides.
4096x-1024x^{2}+16384x=65536
Add 16384x to both sides.
20480x-1024x^{2}=65536
Combine 4096x and 16384x to get 20480x.
20480x-1024x^{2}-65536=0
Subtract 65536 from both sides.
-1024x^{2}+20480x-65536=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20480±\sqrt{20480^{2}-4\left(-1024\right)\left(-65536\right)}}{2\left(-1024\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1024 for a, 20480 for b, and -65536 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20480±\sqrt{419430400-4\left(-1024\right)\left(-65536\right)}}{2\left(-1024\right)}
Square 20480.
x=\frac{-20480±\sqrt{419430400+4096\left(-65536\right)}}{2\left(-1024\right)}
Multiply -4 times -1024.
x=\frac{-20480±\sqrt{419430400-268435456}}{2\left(-1024\right)}
Multiply 4096 times -65536.
x=\frac{-20480±\sqrt{150994944}}{2\left(-1024\right)}
Add 419430400 to -268435456.
x=\frac{-20480±12288}{2\left(-1024\right)}
Take the square root of 150994944.
x=\frac{-20480±12288}{-2048}
Multiply 2 times -1024.
x=-\frac{8192}{-2048}
Now solve the equation x=\frac{-20480±12288}{-2048} when ± is plus. Add -20480 to 12288.
x=4
Divide -8192 by -2048.
x=-\frac{32768}{-2048}
Now solve the equation x=\frac{-20480±12288}{-2048} when ± is minus. Subtract 12288 from -20480.
x=16
Divide -32768 by -2048.
x=4 x=16
The equation is now solved.
2\sqrt{9\times 4}-6=10-2\sqrt{4}
Substitute 4 for x in the equation 2\sqrt{9x}-6=10-2\sqrt{x}.
6=6
Simplify. The value x=4 satisfies the equation.
2\sqrt{9\times 16}-6=10-2\sqrt{16}
Substitute 16 for x in the equation 2\sqrt{9x}-6=10-2\sqrt{x}.
18=2
Simplify. The value x=16 does not satisfy the equation.
2\sqrt{9\times 4}-6=10-2\sqrt{4}
Substitute 4 for x in the equation 2\sqrt{9x}-6=10-2\sqrt{x}.
6=6
Simplify. The value x=4 satisfies the equation.
x=4
Equation 2\sqrt{9x}=10-2\sqrt{x}+6 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}