Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\times 5\sqrt{3}-4\sqrt{\frac{1}{27}}+3\sqrt{48}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
10\sqrt{3}-4\sqrt{\frac{1}{27}}+3\sqrt{48}
Multiply 2 and 5 to get 10.
10\sqrt{3}-4\times \frac{\sqrt{1}}{\sqrt{27}}+3\sqrt{48}
Rewrite the square root of the division \sqrt{\frac{1}{27}} as the division of square roots \frac{\sqrt{1}}{\sqrt{27}}.
10\sqrt{3}-4\times \frac{1}{\sqrt{27}}+3\sqrt{48}
Calculate the square root of 1 and get 1.
10\sqrt{3}-4\times \frac{1}{3\sqrt{3}}+3\sqrt{48}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
10\sqrt{3}-4\times \frac{\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}+3\sqrt{48}
Rationalize the denominator of \frac{1}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
10\sqrt{3}-4\times \frac{\sqrt{3}}{3\times 3}+3\sqrt{48}
The square of \sqrt{3} is 3.
10\sqrt{3}-4\times \frac{\sqrt{3}}{9}+3\sqrt{48}
Multiply 3 and 3 to get 9.
10\sqrt{3}+\frac{-4\sqrt{3}}{9}+3\sqrt{48}
Express -4\times \frac{\sqrt{3}}{9} as a single fraction.
10\sqrt{3}+\frac{-4\sqrt{3}}{9}+3\times 4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
10\sqrt{3}+\frac{-4\sqrt{3}}{9}+12\sqrt{3}
Multiply 3 and 4 to get 12.
22\sqrt{3}+\frac{-4\sqrt{3}}{9}
Combine 10\sqrt{3} and 12\sqrt{3} to get 22\sqrt{3}.
\frac{9\times 22\sqrt{3}}{9}+\frac{-4\sqrt{3}}{9}
To add or subtract expressions, expand them to make their denominators the same. Multiply 22\sqrt{3} times \frac{9}{9}.
\frac{9\times 22\sqrt{3}-4\sqrt{3}}{9}
Since \frac{9\times 22\sqrt{3}}{9} and \frac{-4\sqrt{3}}{9} have the same denominator, add them by adding their numerators.
\frac{198\sqrt{3}-4\sqrt{3}}{9}
Do the multiplications in 9\times 22\sqrt{3}-4\sqrt{3}.
\frac{194\sqrt{3}}{9}
Do the calculations in 198\sqrt{3}-4\sqrt{3}.