Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\times 5\sqrt{3}+3\sqrt{20}-\left(\sqrt{125}+\sqrt{5}\right)
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
10\sqrt{3}+3\sqrt{20}-\left(\sqrt{125}+\sqrt{5}\right)
Multiply 2 and 5 to get 10.
10\sqrt{3}+3\times 2\sqrt{5}-\left(\sqrt{125}+\sqrt{5}\right)
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
10\sqrt{3}+6\sqrt{5}-\left(\sqrt{125}+\sqrt{5}\right)
Multiply 3 and 2 to get 6.
10\sqrt{3}+6\sqrt{5}-\left(5\sqrt{5}+\sqrt{5}\right)
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
10\sqrt{3}+6\sqrt{5}-6\sqrt{5}
Combine 5\sqrt{5} and \sqrt{5} to get 6\sqrt{5}.
10\sqrt{3}
Combine 6\sqrt{5} and -6\sqrt{5} to get 0.