Evaluate
-\frac{53\sqrt{3}}{3}+20\sqrt{7}-\sqrt{5}\approx 20.079393977
Share
Copied to clipboard
2\times 10\sqrt{7}-15\sqrt{\frac{1}{45}}+4\sqrt{\frac{3}{16}}-56\sqrt{\frac{1}{3}}
Factor 700=10^{2}\times 7. Rewrite the square root of the product \sqrt{10^{2}\times 7} as the product of square roots \sqrt{10^{2}}\sqrt{7}. Take the square root of 10^{2}.
20\sqrt{7}-15\sqrt{\frac{1}{45}}+4\sqrt{\frac{3}{16}}-56\sqrt{\frac{1}{3}}
Multiply 2 and 10 to get 20.
20\sqrt{7}-15\times \frac{\sqrt{1}}{\sqrt{45}}+4\sqrt{\frac{3}{16}}-56\sqrt{\frac{1}{3}}
Rewrite the square root of the division \sqrt{\frac{1}{45}} as the division of square roots \frac{\sqrt{1}}{\sqrt{45}}.
20\sqrt{7}-15\times \frac{1}{\sqrt{45}}+4\sqrt{\frac{3}{16}}-56\sqrt{\frac{1}{3}}
Calculate the square root of 1 and get 1.
20\sqrt{7}-15\times \frac{1}{3\sqrt{5}}+4\sqrt{\frac{3}{16}}-56\sqrt{\frac{1}{3}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
20\sqrt{7}-15\times \frac{\sqrt{5}}{3\left(\sqrt{5}\right)^{2}}+4\sqrt{\frac{3}{16}}-56\sqrt{\frac{1}{3}}
Rationalize the denominator of \frac{1}{3\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
20\sqrt{7}-15\times \frac{\sqrt{5}}{3\times 5}+4\sqrt{\frac{3}{16}}-56\sqrt{\frac{1}{3}}
The square of \sqrt{5} is 5.
20\sqrt{7}-15\times \frac{\sqrt{5}}{15}+4\sqrt{\frac{3}{16}}-56\sqrt{\frac{1}{3}}
Multiply 3 and 5 to get 15.
20\sqrt{7}-\sqrt{5}+4\sqrt{\frac{3}{16}}-56\sqrt{\frac{1}{3}}
Cancel out 15 and 15.
20\sqrt{7}-\sqrt{5}+4\times \frac{\sqrt{3}}{\sqrt{16}}-56\sqrt{\frac{1}{3}}
Rewrite the square root of the division \sqrt{\frac{3}{16}} as the division of square roots \frac{\sqrt{3}}{\sqrt{16}}.
20\sqrt{7}-\sqrt{5}+4\times \frac{\sqrt{3}}{4}-56\sqrt{\frac{1}{3}}
Calculate the square root of 16 and get 4.
20\sqrt{7}-\sqrt{5}+\sqrt{3}-56\sqrt{\frac{1}{3}}
Cancel out 4 and 4.
20\sqrt{7}-\sqrt{5}+\sqrt{3}-56\times \frac{\sqrt{1}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
20\sqrt{7}-\sqrt{5}+\sqrt{3}-56\times \frac{1}{\sqrt{3}}
Calculate the square root of 1 and get 1.
20\sqrt{7}-\sqrt{5}+\sqrt{3}-56\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
20\sqrt{7}-\sqrt{5}+\sqrt{3}-56\times \frac{\sqrt{3}}{3}
The square of \sqrt{3} is 3.
20\sqrt{7}-\sqrt{5}+\sqrt{3}+\frac{-56\sqrt{3}}{3}
Express -56\times \frac{\sqrt{3}}{3} as a single fraction.
\frac{3\left(20\sqrt{7}-\sqrt{5}+\sqrt{3}\right)}{3}+\frac{-56\sqrt{3}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 20\sqrt{7}-\sqrt{5}+\sqrt{3} times \frac{3}{3}.
\frac{3\left(20\sqrt{7}-\sqrt{5}+\sqrt{3}\right)-56\sqrt{3}}{3}
Since \frac{3\left(20\sqrt{7}-\sqrt{5}+\sqrt{3}\right)}{3} and \frac{-56\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
\frac{60\sqrt{7}-3\sqrt{5}+3\sqrt{3}-56\sqrt{3}}{3}
Do the multiplications in 3\left(20\sqrt{7}-\sqrt{5}+\sqrt{3}\right)-56\sqrt{3}.
\frac{60\sqrt{7}-3\sqrt{5}-53\sqrt{3}}{3}
Do the calculations in 60\sqrt{7}-3\sqrt{5}+3\sqrt{3}-56\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}