Solve for t
t = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\left(2\sqrt{4\left(t-1\right)}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Square both sides of the equation.
\left(2\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Use the distributive property to multiply 4 by t-1.
2^{2}\left(\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Expand \left(2\sqrt{4t-4}\right)^{2}.
4\left(\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(4t-4\right)=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Calculate \sqrt{4t-4} to the power of 2 and get 4t-4.
16t-16=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Use the distributive property to multiply 4 by 4t-4.
16t-16=\left(\sqrt{8t-4}\right)^{2}
Use the distributive property to multiply 4 by 2t-1.
16t-16=8t-4
Calculate \sqrt{8t-4} to the power of 2 and get 8t-4.
16t-16-8t=-4
Subtract 8t from both sides.
8t-16=-4
Combine 16t and -8t to get 8t.
8t=-4+16
Add 16 to both sides.
8t=12
Add -4 and 16 to get 12.
t=\frac{12}{8}
Divide both sides by 8.
t=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
2\sqrt{4\left(\frac{3}{2}-1\right)}=\sqrt{4\left(2\times \frac{3}{2}-1\right)}
Substitute \frac{3}{2} for t in the equation 2\sqrt{4\left(t-1\right)}=\sqrt{4\left(2t-1\right)}.
2\times 2^{\frac{1}{2}}=2\times 2^{\frac{1}{2}}
Simplify. The value t=\frac{3}{2} satisfies the equation.
t=\frac{3}{2}
Equation 2\sqrt{4\left(t-1\right)}=\sqrt{4\left(2t-1\right)} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}