Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{4\left(t-1\right)}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Square both sides of the equation.
\left(2\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Use the distributive property to multiply 4 by t-1.
2^{2}\left(\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Expand \left(2\sqrt{4t-4}\right)^{2}.
4\left(\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(4t-4\right)=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Calculate \sqrt{4t-4} to the power of 2 and get 4t-4.
16t-16=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
Use the distributive property to multiply 4 by 4t-4.
16t-16=\left(\sqrt{8t-4}\right)^{2}
Use the distributive property to multiply 4 by 2t-1.
16t-16=8t-4
Calculate \sqrt{8t-4} to the power of 2 and get 8t-4.
16t-16-8t=-4
Subtract 8t from both sides.
8t-16=-4
Combine 16t and -8t to get 8t.
8t=-4+16
Add 16 to both sides.
8t=12
Add -4 and 16 to get 12.
t=\frac{12}{8}
Divide both sides by 8.
t=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
2\sqrt{4\left(\frac{3}{2}-1\right)}=\sqrt{4\left(2\times \frac{3}{2}-1\right)}
Substitute \frac{3}{2} for t in the equation 2\sqrt{4\left(t-1\right)}=\sqrt{4\left(2t-1\right)}.
2\times 2^{\frac{1}{2}}=2\times 2^{\frac{1}{2}}
Simplify. The value t=\frac{3}{2} satisfies the equation.
t=\frac{3}{2}
Equation 2\sqrt{4\left(t-1\right)}=\sqrt{4\left(2t-1\right)} has a unique solution.