Solve for y (complex solution)
y=\frac{\sqrt{9-x^{2}}}{4x}
x\neq 0
Solve for y
y=\frac{\sqrt{9-x^{2}}}{4x}
x\neq 0\text{ and }|x|\leq 3
Solve for x (complex solution)
\left\{\begin{matrix}x=3i\left(-16y^{2}-1\right)^{-\frac{1}{2}}\text{, }&y\neq \frac{1}{4}i\text{ and }y\neq -\frac{1}{4}i\text{ and }\left(y=0\text{ or }arg(3i\left(-16y^{2}-1\right)^{-\frac{1}{2}}y)<\pi \right)\\x=-3i\left(-16y^{2}-1\right)^{-\frac{1}{2}}\text{, }&y\neq \frac{1}{4}i\text{ and }y\neq -\frac{1}{4}i\text{ and }\left(y=0\text{ or }arg(-3i\left(-16y^{2}-1\right)^{-\frac{1}{2}}y)<\pi \right)\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{3}{\sqrt{16y^{2}+1}}\text{, }&y\leq 0\\x=\frac{3}{\sqrt{16y^{2}+1}}\text{, }&y\geq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
2\times 2xy=\sqrt{9-x^{2}}
Calculate the square root of 4 and get 2.
4xy=\sqrt{9-x^{2}}
Multiply 2 and 2 to get 4.
\frac{4xy}{4x}=\frac{\sqrt{9-x^{2}}}{4x}
Divide both sides by 4x.
y=\frac{\sqrt{9-x^{2}}}{4x}
Dividing by 4x undoes the multiplication by 4x.
2\times 2xy=\sqrt{9-x^{2}}
Calculate the square root of 4 and get 2.
4xy=\sqrt{9-x^{2}}
Multiply 2 and 2 to get 4.
\frac{4xy}{4x}=\frac{\sqrt{9-x^{2}}}{4x}
Divide both sides by 4x.
y=\frac{\sqrt{9-x^{2}}}{4x}
Dividing by 4x undoes the multiplication by 4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}