Evaluate
10\sqrt{14}\approx 37.416573868
Share
Copied to clipboard
2\sqrt{3}\left(-\frac{\sqrt{7}}{\sqrt{3}}\right)\left(-5\right)\sqrt{2}
Rewrite the square root of the division \sqrt{\frac{7}{3}} as the division of square roots \frac{\sqrt{7}}{\sqrt{3}}.
2\sqrt{3}\left(-\frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)\left(-5\right)\sqrt{2}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\sqrt{3}\left(-\frac{\sqrt{7}\sqrt{3}}{3}\right)\left(-5\right)\sqrt{2}
The square of \sqrt{3} is 3.
2\sqrt{3}\left(-\frac{\sqrt{21}}{3}\right)\left(-5\right)\sqrt{2}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
-10\sqrt{3}\left(-\frac{\sqrt{21}}{3}\right)\sqrt{2}
Multiply 2 and -5 to get -10.
10\sqrt{3}\times \frac{\sqrt{21}}{3}\sqrt{2}
Multiply -10 and -1 to get 10.
10\times \frac{\sqrt{3}\sqrt{21}}{3}\sqrt{2}
Express \sqrt{3}\times \frac{\sqrt{21}}{3} as a single fraction.
10\times \frac{\sqrt{3}\sqrt{21}\sqrt{2}}{3}
Express \frac{\sqrt{3}\sqrt{21}}{3}\sqrt{2} as a single fraction.
10\times \frac{\sqrt{3}\sqrt{3}\sqrt{7}\sqrt{2}}{3}
Factor 21=3\times 7. Rewrite the square root of the product \sqrt{3\times 7} as the product of square roots \sqrt{3}\sqrt{7}.
10\times \frac{3\sqrt{7}\sqrt{2}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
10\times \frac{3\sqrt{14}}{3}
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
10\sqrt{14}
Cancel out 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}