Evaluate
5-2\sqrt{6}\approx 0.101020514
Share
Copied to clipboard
2\times 2\sqrt{6}-\frac{8}{\sqrt{\frac{2}{3}}}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
4\sqrt{6}-\frac{8}{\sqrt{\frac{2}{3}}}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
Multiply 2 and 2 to get 4.
4\sqrt{6}-\frac{8}{\frac{\sqrt{2}}{\sqrt{3}}}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
4\sqrt{6}-\frac{8}{\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4\sqrt{6}-\frac{8}{\frac{\sqrt{2}\sqrt{3}}{3}}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
4\sqrt{6}-\frac{8}{\frac{\sqrt{6}}{3}}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
4\sqrt{6}-\frac{8\times 3}{\sqrt{6}}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
Divide 8 by \frac{\sqrt{6}}{3} by multiplying 8 by the reciprocal of \frac{\sqrt{6}}{3}.
4\sqrt{6}-\frac{8\times 3\sqrt{6}}{\left(\sqrt{6}\right)^{2}}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
Rationalize the denominator of \frac{8\times 3}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
4\sqrt{6}-\frac{8\times 3\sqrt{6}}{6}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
The square of \sqrt{6} is 6.
4\sqrt{6}-\frac{24\sqrt{6}}{6}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
Multiply 8 and 3 to get 24.
4\sqrt{6}-4\sqrt{6}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
Divide 24\sqrt{6} by 6 to get 4\sqrt{6}.
4\sqrt{6}-4\sqrt{6}+\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-\sqrt{2}\right)^{2}.
4\sqrt{6}-4\sqrt{6}+3-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
4\sqrt{6}-4\sqrt{6}+3-2\sqrt{6}+\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
4\sqrt{6}-4\sqrt{6}+3-2\sqrt{6}+2
The square of \sqrt{2} is 2.
4\sqrt{6}-4\sqrt{6}+5-2\sqrt{6}
Add 3 and 2 to get 5.
2\sqrt{6}-4\sqrt{6}+5
Combine 4\sqrt{6} and -2\sqrt{6} to get 2\sqrt{6}.
-2\sqrt{6}+5
Combine 2\sqrt{6} and -4\sqrt{6} to get -2\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}