Evaluate
\frac{8\sqrt{7}}{15}\approx 1.411067366
Share
Copied to clipboard
\frac{2\times 2\sqrt{6}}{3}\sqrt{\frac{3}{5}}\times \frac{1}{3}\sqrt{\frac{2\times 5+4}{5}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{4\sqrt{6}}{3}\sqrt{\frac{3}{5}}\times \frac{1}{3}\sqrt{\frac{2\times 5+4}{5}}
Multiply 2 and 2 to get 4.
\frac{4\sqrt{6}}{3}\times \frac{\sqrt{3}}{\sqrt{5}}\times \frac{1}{3}\sqrt{\frac{2\times 5+4}{5}}
Rewrite the square root of the division \sqrt{\frac{3}{5}} as the division of square roots \frac{\sqrt{3}}{\sqrt{5}}.
\frac{4\sqrt{6}}{3}\times \frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\times \frac{1}{3}\sqrt{\frac{2\times 5+4}{5}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{4\sqrt{6}}{3}\times \frac{\sqrt{3}\sqrt{5}}{5}\times \frac{1}{3}\sqrt{\frac{2\times 5+4}{5}}
The square of \sqrt{5} is 5.
\frac{4\sqrt{6}}{3}\times \frac{\sqrt{15}}{5}\times \frac{1}{3}\sqrt{\frac{2\times 5+4}{5}}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{4\sqrt{6}}{3}\times \frac{\sqrt{15}}{5}\times \frac{1}{3}\sqrt{\frac{10+4}{5}}
Multiply 2 and 5 to get 10.
\frac{4\sqrt{6}}{3}\times \frac{\sqrt{15}}{5}\times \frac{1}{3}\sqrt{\frac{14}{5}}
Add 10 and 4 to get 14.
\frac{4\sqrt{6}}{3}\times \frac{\sqrt{15}}{5}\times \frac{1}{3}\times \frac{\sqrt{14}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{14}{5}} as the division of square roots \frac{\sqrt{14}}{\sqrt{5}}.
\frac{4\sqrt{6}}{3}\times \frac{\sqrt{15}}{5}\times \frac{1}{3}\times \frac{\sqrt{14}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{14}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{4\sqrt{6}}{3}\times \frac{\sqrt{15}}{5}\times \frac{1}{3}\times \frac{\sqrt{14}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{4\sqrt{6}}{3}\times \frac{\sqrt{15}}{5}\times \frac{1}{3}\times \frac{\sqrt{70}}{5}
To multiply \sqrt{14} and \sqrt{5}, multiply the numbers under the square root.
\frac{4\sqrt{6}\sqrt{15}}{3\times 5}\times \frac{1}{3}\times \frac{\sqrt{70}}{5}
Multiply \frac{4\sqrt{6}}{3} times \frac{\sqrt{15}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{4\sqrt{6}\sqrt{15}}{3\times 5\times 3}\times \frac{\sqrt{70}}{5}
Multiply \frac{4\sqrt{6}\sqrt{15}}{3\times 5} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{4\sqrt{6}\sqrt{15}\sqrt{70}}{3\times 5\times 3\times 5}
Multiply \frac{4\sqrt{6}\sqrt{15}}{3\times 5\times 3} times \frac{\sqrt{70}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{4\sqrt{90}\sqrt{70}}{3\times 5\times 3\times 5}
To multiply \sqrt{6} and \sqrt{15}, multiply the numbers under the square root.
\frac{4\sqrt{6300}}{3\times 5\times 3\times 5}
To multiply \sqrt{90} and \sqrt{70}, multiply the numbers under the square root.
\frac{4\sqrt{6300}}{15\times 3\times 5}
Multiply 3 and 5 to get 15.
\frac{4\sqrt{6300}}{45\times 5}
Multiply 15 and 3 to get 45.
\frac{4\sqrt{6300}}{225}
Multiply 45 and 5 to get 225.
\frac{4\times 30\sqrt{7}}{225}
Factor 6300=30^{2}\times 7. Rewrite the square root of the product \sqrt{30^{2}\times 7} as the product of square roots \sqrt{30^{2}}\sqrt{7}. Take the square root of 30^{2}.
\frac{120\sqrt{7}}{225}
Multiply 4 and 30 to get 120.
\frac{8}{15}\sqrt{7}
Divide 120\sqrt{7} by 225 to get \frac{8}{15}\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}