Solve for x
x = \frac{5 \sqrt{2}}{2} \approx 3.535533906
Graph
Share
Copied to clipboard
2\sqrt{2}x+2x+2=\left(2+\sqrt{2}\right)x+7
Use the distributive property to multiply 2 by x+1.
2\sqrt{2}x+2x+2=2x+\sqrt{2}x+7
Use the distributive property to multiply 2+\sqrt{2} by x.
2\sqrt{2}x+2x+2-2x=\sqrt{2}x+7
Subtract 2x from both sides.
2\sqrt{2}x+2=\sqrt{2}x+7
Combine 2x and -2x to get 0.
2\sqrt{2}x+2-\sqrt{2}x=7
Subtract \sqrt{2}x from both sides.
\sqrt{2}x+2=7
Combine 2\sqrt{2}x and -\sqrt{2}x to get \sqrt{2}x.
\sqrt{2}x=7-2
Subtract 2 from both sides.
\sqrt{2}x=5
Subtract 2 from 7 to get 5.
\frac{\sqrt{2}x}{\sqrt{2}}=\frac{5}{\sqrt{2}}
Divide both sides by \sqrt{2}.
x=\frac{5}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
x=\frac{5\sqrt{2}}{2}
Divide 5 by \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}