Evaluate
2\sqrt{10}-\frac{7}{2}\approx 2.82455532
Factor
\frac{4 \sqrt{10} - 7}{2} = 2.824555320336759
Share
Copied to clipboard
2\sqrt{10}-\frac{\sqrt{10}}{2\sqrt{10}}-\frac{3\sqrt{2}}{2}\sqrt{2}
Express \frac{\frac{\sqrt{10}}{2}}{\sqrt{10}} as a single fraction.
2\sqrt{10}-\frac{\sqrt{10}\sqrt{10}}{2\left(\sqrt{10}\right)^{2}}-\frac{3\sqrt{2}}{2}\sqrt{2}
Rationalize the denominator of \frac{\sqrt{10}}{2\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
2\sqrt{10}-\frac{\sqrt{10}\sqrt{10}}{2\times 10}-\frac{3\sqrt{2}}{2}\sqrt{2}
The square of \sqrt{10} is 10.
2\sqrt{10}-\frac{10}{2\times 10}-\frac{3\sqrt{2}}{2}\sqrt{2}
Multiply \sqrt{10} and \sqrt{10} to get 10.
2\sqrt{10}-\frac{10}{20}-\frac{3\sqrt{2}}{2}\sqrt{2}
Multiply 2 and 10 to get 20.
2\sqrt{10}-\frac{1}{2}-\frac{3\sqrt{2}}{2}\sqrt{2}
Reduce the fraction \frac{10}{20} to lowest terms by extracting and canceling out 10.
2\sqrt{10}-\frac{1}{2}-\frac{3\sqrt{2}\sqrt{2}}{2}
Express \frac{3\sqrt{2}}{2}\sqrt{2} as a single fraction.
2\sqrt{10}-\frac{1}{2}-\frac{3\times 2}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\sqrt{10}-\frac{1}{2}-3
Cancel out 2 and 2.
2\sqrt{10}-\frac{1}{2}-\frac{6}{2}
Convert 3 to fraction \frac{6}{2}.
2\sqrt{10}+\frac{-1-6}{2}
Since -\frac{1}{2} and \frac{6}{2} have the same denominator, subtract them by subtracting their numerators.
2\sqrt{10}-\frac{7}{2}
Subtract 6 from -1 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}