Solve for x
x=152-36\sqrt{17}\approx 3.568197478
Graph
Share
Copied to clipboard
\left(2\sqrt{\left(2x+8\right)\left(x+7\right)}\right)^{2}=\left(36-3x\right)^{2}
Square both sides of the equation.
\left(2\sqrt{2x^{2}+22x+56}\right)^{2}=\left(36-3x\right)^{2}
Use the distributive property to multiply 2x+8 by x+7 and combine like terms.
2^{2}\left(\sqrt{2x^{2}+22x+56}\right)^{2}=\left(36-3x\right)^{2}
Expand \left(2\sqrt{2x^{2}+22x+56}\right)^{2}.
4\left(\sqrt{2x^{2}+22x+56}\right)^{2}=\left(36-3x\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(2x^{2}+22x+56\right)=\left(36-3x\right)^{2}
Calculate \sqrt{2x^{2}+22x+56} to the power of 2 and get 2x^{2}+22x+56.
8x^{2}+88x+224=\left(36-3x\right)^{2}
Use the distributive property to multiply 4 by 2x^{2}+22x+56.
8x^{2}+88x+224=1296-216x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(36-3x\right)^{2}.
8x^{2}+88x+224-1296=-216x+9x^{2}
Subtract 1296 from both sides.
8x^{2}+88x-1072=-216x+9x^{2}
Subtract 1296 from 224 to get -1072.
8x^{2}+88x-1072+216x=9x^{2}
Add 216x to both sides.
8x^{2}+304x-1072=9x^{2}
Combine 88x and 216x to get 304x.
8x^{2}+304x-1072-9x^{2}=0
Subtract 9x^{2} from both sides.
-x^{2}+304x-1072=0
Combine 8x^{2} and -9x^{2} to get -x^{2}.
x=\frac{-304±\sqrt{304^{2}-4\left(-1\right)\left(-1072\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 304 for b, and -1072 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-304±\sqrt{92416-4\left(-1\right)\left(-1072\right)}}{2\left(-1\right)}
Square 304.
x=\frac{-304±\sqrt{92416+4\left(-1072\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-304±\sqrt{92416-4288}}{2\left(-1\right)}
Multiply 4 times -1072.
x=\frac{-304±\sqrt{88128}}{2\left(-1\right)}
Add 92416 to -4288.
x=\frac{-304±72\sqrt{17}}{2\left(-1\right)}
Take the square root of 88128.
x=\frac{-304±72\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{72\sqrt{17}-304}{-2}
Now solve the equation x=\frac{-304±72\sqrt{17}}{-2} when ± is plus. Add -304 to 72\sqrt{17}.
x=152-36\sqrt{17}
Divide -304+72\sqrt{17} by -2.
x=\frac{-72\sqrt{17}-304}{-2}
Now solve the equation x=\frac{-304±72\sqrt{17}}{-2} when ± is minus. Subtract 72\sqrt{17} from -304.
x=36\sqrt{17}+152
Divide -304-72\sqrt{17} by -2.
x=152-36\sqrt{17} x=36\sqrt{17}+152
The equation is now solved.
2\sqrt{\left(2\left(152-36\sqrt{17}\right)+8\right)\left(152-36\sqrt{17}+7\right)}=36-3\left(152-36\sqrt{17}\right)
Substitute 152-36\sqrt{17} for x in the equation 2\sqrt{\left(2x+8\right)\left(x+7\right)}=36-3x.
108\times 17^{\frac{1}{2}}-420=-420+108\times 17^{\frac{1}{2}}
Simplify. The value x=152-36\sqrt{17} satisfies the equation.
2\sqrt{\left(2\left(36\sqrt{17}+152\right)+8\right)\left(36\sqrt{17}+152+7\right)}=36-3\left(36\sqrt{17}+152\right)
Substitute 36\sqrt{17}+152 for x in the equation 2\sqrt{\left(2x+8\right)\left(x+7\right)}=36-3x.
108\times 17^{\frac{1}{2}}+420=-420-108\times 17^{\frac{1}{2}}
Simplify. The value x=36\sqrt{17}+152 does not satisfy the equation because the left and the right hand side have opposite signs.
x=152-36\sqrt{17}
Equation 2\sqrt{\left(x+7\right)\left(2x+8\right)}=36-3x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}