Evaluate
-4
Factor
-4
Share
Copied to clipboard
2\times \frac{\sqrt{2}}{\sqrt{3}}\left(3\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
2\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(3\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\times \frac{\sqrt{2}\sqrt{3}}{3}\left(3\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)
The square of \sqrt{3} is 3.
2\times \frac{\sqrt{6}}{3}\left(3\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\times \frac{\sqrt{6}}{3}\left(3\times \frac{\sqrt{2}}{\sqrt{3}}-4\sqrt{\frac{3}{2}}\right)
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
2\times \frac{\sqrt{6}}{3}\left(3\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-4\sqrt{\frac{3}{2}}\right)
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\times \frac{\sqrt{6}}{3}\left(3\times \frac{\sqrt{2}\sqrt{3}}{3}-4\sqrt{\frac{3}{2}}\right)
The square of \sqrt{3} is 3.
2\times \frac{\sqrt{6}}{3}\left(3\times \frac{\sqrt{6}}{3}-4\sqrt{\frac{3}{2}}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\times \frac{\sqrt{6}}{3}\left(\sqrt{6}-4\sqrt{\frac{3}{2}}\right)
Cancel out 3 and 3.
2\times \frac{\sqrt{6}}{3}\left(\sqrt{6}-4\times \frac{\sqrt{3}}{\sqrt{2}}\right)
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
2\times \frac{\sqrt{6}}{3}\left(\sqrt{6}-4\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\times \frac{\sqrt{6}}{3}\left(\sqrt{6}-4\times \frac{\sqrt{3}\sqrt{2}}{2}\right)
The square of \sqrt{2} is 2.
2\times \frac{\sqrt{6}}{3}\left(\sqrt{6}-4\times \frac{\sqrt{6}}{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
2\times \frac{\sqrt{6}}{3}\left(\sqrt{6}-2\sqrt{6}\right)
Cancel out 2, the greatest common factor in 4 and 2.
2\times \frac{\sqrt{6}}{3}\left(-1\right)\sqrt{6}
Combine \sqrt{6} and -2\sqrt{6} to get -\sqrt{6}.
-2\times \frac{\sqrt{6}}{3}\sqrt{6}
Multiply 2 and -1 to get -2.
\frac{-2\sqrt{6}}{3}\sqrt{6}
Express -2\times \frac{\sqrt{6}}{3} as a single fraction.
\frac{-2\sqrt{6}\sqrt{6}}{3}
Express \frac{-2\sqrt{6}}{3}\sqrt{6} as a single fraction.
\frac{-2\times 6}{3}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{-12}{3}
Multiply -2 and 6 to get -12.
-4
Divide -12 by 3 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}