Evaluate
\frac{8\sqrt{87}}{29}+1647086\approx 1647088.573070084
Quiz
Arithmetic
5 problems similar to:
2 \sqrt { \frac { 144 } { 87 } } + 7 ^ { 7 } \cdot \sqrt[ 3 ] { 8 }
Share
Copied to clipboard
2\sqrt{\frac{48}{29}}+7^{7}\sqrt[3]{8}
Reduce the fraction \frac{144}{87} to lowest terms by extracting and canceling out 3.
2\times \frac{\sqrt{48}}{\sqrt{29}}+7^{7}\sqrt[3]{8}
Rewrite the square root of the division \sqrt{\frac{48}{29}} as the division of square roots \frac{\sqrt{48}}{\sqrt{29}}.
2\times \frac{4\sqrt{3}}{\sqrt{29}}+7^{7}\sqrt[3]{8}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
2\times \frac{4\sqrt{3}\sqrt{29}}{\left(\sqrt{29}\right)^{2}}+7^{7}\sqrt[3]{8}
Rationalize the denominator of \frac{4\sqrt{3}}{\sqrt{29}} by multiplying numerator and denominator by \sqrt{29}.
2\times \frac{4\sqrt{3}\sqrt{29}}{29}+7^{7}\sqrt[3]{8}
The square of \sqrt{29} is 29.
2\times \frac{4\sqrt{87}}{29}+7^{7}\sqrt[3]{8}
To multiply \sqrt{3} and \sqrt{29}, multiply the numbers under the square root.
\frac{2\times 4\sqrt{87}}{29}+7^{7}\sqrt[3]{8}
Express 2\times \frac{4\sqrt{87}}{29} as a single fraction.
\frac{2\times 4\sqrt{87}}{29}+823543\sqrt[3]{8}
Calculate 7 to the power of 7 and get 823543.
\frac{2\times 4\sqrt{87}}{29}+823543\times 2
Calculate \sqrt[3]{8} and get 2.
\frac{2\times 4\sqrt{87}}{29}+1647086
Multiply 823543 and 2 to get 1647086.
\frac{2\times 4\sqrt{87}}{29}+\frac{1647086\times 29}{29}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1647086 times \frac{29}{29}.
\frac{2\times 4\sqrt{87}+1647086\times 29}{29}
Since \frac{2\times 4\sqrt{87}}{29} and \frac{1647086\times 29}{29} have the same denominator, add them by adding their numerators.
\frac{8\sqrt{87}+47765494}{29}
Do the multiplications in 2\times 4\sqrt{87}+1647086\times 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}