2 \sqrt { \frac { 1 } { 3 } } \times 3 \sqrt { 2 } + \sqrt { 8 } + \sqrt { 2 } - 1 | - \pi ^ { 0 } + ( \frac { 1 } { 2 } )
Evaluate
2\sqrt{6}+3\sqrt{2}-\frac{1}{2}\approx 8.641620173
Share
Copied to clipboard
2\times \frac{\sqrt{1}}{\sqrt{3}}\times 3\sqrt{2}+\sqrt{8}+\sqrt{2}-1|-\pi ^{0}+\frac{1}{2}|
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
2\times \frac{1}{\sqrt{3}}\times 3\sqrt{2}+\sqrt{8}+\sqrt{2}-1|-\pi ^{0}+\frac{1}{2}|
Calculate the square root of 1 and get 1.
2\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times 3\sqrt{2}+\sqrt{8}+\sqrt{2}-1|-\pi ^{0}+\frac{1}{2}|
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\times \frac{\sqrt{3}}{3}\times 3\sqrt{2}+\sqrt{8}+\sqrt{2}-1|-\pi ^{0}+\frac{1}{2}|
The square of \sqrt{3} is 3.
6\times \frac{\sqrt{3}}{3}\sqrt{2}+\sqrt{8}+\sqrt{2}-1|-\pi ^{0}+\frac{1}{2}|
Multiply 2 and 3 to get 6.
2\sqrt{3}\sqrt{2}+\sqrt{8}+\sqrt{2}-1|-\pi ^{0}+\frac{1}{2}|
Cancel out 3, the greatest common factor in 6 and 3.
2\sqrt{3}\sqrt{2}+2\sqrt{2}+\sqrt{2}-1|-\pi ^{0}+\frac{1}{2}|
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{3}\sqrt{2}+3\sqrt{2}-1|-\pi ^{0}+\frac{1}{2}|
Combine 2\sqrt{2} and \sqrt{2} to get 3\sqrt{2}.
2\sqrt{3}\sqrt{2}+3\sqrt{2}-1|-1+\frac{1}{2}|
Calculate \pi to the power of 0 and get 1.
2\sqrt{3}\sqrt{2}+3\sqrt{2}-1|-\frac{1}{2}|
Add -1 and \frac{1}{2} to get -\frac{1}{2}.
2\sqrt{3}\sqrt{2}+3\sqrt{2}-1\times \frac{1}{2}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{2} is \frac{1}{2}.
2\sqrt{3}\sqrt{2}+3\sqrt{2}-\frac{1}{2}
Multiply 1 and \frac{1}{2} to get \frac{1}{2}.
2\sqrt{6}+3\sqrt{2}-\frac{1}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}