Solve for x (complex solution)
x=\frac{e^{\frac{1}{2}i}\alpha }{i+e^{\frac{3\pi i}{2}+i}}
Solve for x
x=\frac{\alpha }{2\sin(\frac{1}{2})}
Solve for α (complex solution)
\alpha =2\sin(\frac{1}{2})e^{2\pi i}x
Solve for α
\alpha =2\sin(\frac{1}{2})x
Graph
Share
Copied to clipboard
2\sin(\frac{1}{2})x=\alpha
The equation is in standard form.
\frac{2\sin(\frac{1}{2})x}{2\sin(\frac{1}{2})}=\frac{\alpha }{2\sin(\frac{1}{2})}
Divide both sides by 2\sin(\frac{1}{2}).
x=\frac{\alpha }{2\sin(\frac{1}{2})}
Dividing by 2\sin(\frac{1}{2}) undoes the multiplication by 2\sin(\frac{1}{2}).
2\sin(\frac{1}{2})x=\alpha
The equation is in standard form.
\frac{2\sin(\frac{1}{2})x}{2\sin(\frac{1}{2})}=\frac{\alpha }{2\sin(\frac{1}{2})}
Divide both sides by 2\sin(\frac{1}{2}).
x=\frac{\alpha }{2\sin(\frac{1}{2})}
Dividing by 2\sin(\frac{1}{2}) undoes the multiplication by 2\sin(\frac{1}{2}).
\alpha =2\sin(\frac{1}{2})x
Swap sides so that all variable terms are on the left hand side.
\alpha =2\sin(\frac{1}{2})x
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}