Skip to main content
Evaluate
Tick mark Image

Share

2\times \left(\frac{\sqrt{3}}{2}\right)^{2}+3\left(\cos(60)\right)^{2}+4\left(\tan(60)\right)^{2}
Get the value of \sin(60) from trigonometric values table.
2\times \frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+3\left(\cos(60)\right)^{2}+4\left(\tan(60)\right)^{2}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{2\left(\sqrt{3}\right)^{2}}{2^{2}}+3\left(\cos(60)\right)^{2}+4\left(\tan(60)\right)^{2}
Express 2\times \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} as a single fraction.
\frac{\left(\sqrt{3}\right)^{2}}{2}+3\left(\cos(60)\right)^{2}+4\left(\tan(60)\right)^{2}
Cancel out 2 in both numerator and denominator.
\frac{\left(\sqrt{3}\right)^{2}}{2}+3\times \left(\frac{1}{2}\right)^{2}+4\left(\tan(60)\right)^{2}
Get the value of \cos(60) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{2}+3\times \frac{1}{4}+4\left(\tan(60)\right)^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\left(\sqrt{3}\right)^{2}}{2}+\frac{3}{4}+4\left(\tan(60)\right)^{2}
Multiply 3 and \frac{1}{4} to get \frac{3}{4}.
\frac{\left(\sqrt{3}\right)^{2}}{2}+\frac{3}{4}+4\left(\sqrt{3}\right)^{2}
Get the value of \tan(60) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{2}+\frac{3}{4}+4\times 3
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}\right)^{2}}{2}+\frac{3}{4}+12
Multiply 4 and 3 to get 12.
\frac{\left(\sqrt{3}\right)^{2}}{2}+\frac{51}{4}
Add \frac{3}{4} and 12 to get \frac{51}{4}.
\frac{2\left(\sqrt{3}\right)^{2}}{4}+\frac{51}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{\left(\sqrt{3}\right)^{2}}{2} times \frac{2}{2}.
\frac{2\left(\sqrt{3}\right)^{2}+51}{4}
Since \frac{2\left(\sqrt{3}\right)^{2}}{4} and \frac{51}{4} have the same denominator, add them by adding their numerators.
\frac{3}{2}+\frac{51}{4}
The square of \sqrt{3} is 3.
\frac{57}{4}
Add \frac{3}{2} and \frac{51}{4} to get \frac{57}{4}.