Solve for k
k=\frac{n+1}{4}
Solve for n
n=4k-1
Quiz
Linear Equation
5 problems similar to:
2 \pi k - \frac { n \pi } { 4 } = \frac { \pi } { 4 } + \pi k
Share
Copied to clipboard
8\pi k-n\pi =\pi +4\pi k
Multiply both sides of the equation by 4.
8\pi k-n\pi -4\pi k=\pi
Subtract 4\pi k from both sides.
4\pi k-n\pi =\pi
Combine 8\pi k and -4\pi k to get 4\pi k.
4\pi k=\pi +n\pi
Add n\pi to both sides.
4\pi k=\pi n+\pi
The equation is in standard form.
\frac{4\pi k}{4\pi }=\frac{\pi n+\pi }{4\pi }
Divide both sides by 4\pi .
k=\frac{\pi n+\pi }{4\pi }
Dividing by 4\pi undoes the multiplication by 4\pi .
k=\frac{n+1}{4}
Divide \pi +\pi n by 4\pi .
8\pi k-n\pi =\pi +4\pi k
Multiply both sides of the equation by 4.
-n\pi =\pi +4\pi k-8\pi k
Subtract 8\pi k from both sides.
-n\pi =\pi -4\pi k
Combine 4\pi k and -8\pi k to get -4\pi k.
-\pi n=-4\pi k+\pi
Reorder the terms.
\left(-\pi \right)n=\pi -4\pi k
The equation is in standard form.
\frac{\left(-\pi \right)n}{-\pi }=\frac{\pi -4\pi k}{-\pi }
Divide both sides by -\pi .
n=\frac{\pi -4\pi k}{-\pi }
Dividing by -\pi undoes the multiplication by -\pi .
n=4k-1
Divide -4\pi k+\pi by -\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}