Solve for N_1
\left\{\begin{matrix}N_{1}=-\frac{N_{2}\left(y-1\right)}{1-x}\text{, }&x\neq 1\\N_{1}\in \mathrm{R}\text{, }&\left(N_{2}=0\text{ or }y=1\right)\text{ and }x=1\end{matrix}\right.
Solve for N_2
\left\{\begin{matrix}N_{2}=-\frac{N_{1}\left(1-x\right)}{y-1}\text{, }&y\neq 1\\N_{2}\in \mathrm{R}\text{, }&\left(N_{1}=0\text{ or }x=1\right)\text{ and }y=1\end{matrix}\right.
Graph
Share
Copied to clipboard
N_{1}\left(1-x\right)=N_{2}\left(1-y\right)
Cancel out 2\pi on both sides.
N_{1}-N_{1}x=N_{2}\left(1-y\right)
Use the distributive property to multiply N_{1} by 1-x.
N_{1}-N_{1}x=N_{2}-N_{2}y
Use the distributive property to multiply N_{2} by 1-y.
\left(1-x\right)N_{1}=N_{2}-N_{2}y
Combine all terms containing N_{1}.
\frac{\left(1-x\right)N_{1}}{1-x}=\frac{N_{2}-N_{2}y}{1-x}
Divide both sides by -x+1.
N_{1}=\frac{N_{2}-N_{2}y}{1-x}
Dividing by -x+1 undoes the multiplication by -x+1.
N_{1}=\frac{N_{2}\left(1-y\right)}{1-x}
Divide N_{2}-N_{2}y by -x+1.
N_{1}\left(1-x\right)=N_{2}\left(1-y\right)
Cancel out 2\pi on both sides.
N_{1}-N_{1}x=N_{2}\left(1-y\right)
Use the distributive property to multiply N_{1} by 1-x.
N_{1}-N_{1}x=N_{2}-N_{2}y
Use the distributive property to multiply N_{2} by 1-y.
N_{2}-N_{2}y=N_{1}-N_{1}x
Swap sides so that all variable terms are on the left hand side.
\left(1-y\right)N_{2}=N_{1}-N_{1}x
Combine all terms containing N_{2}.
\frac{\left(1-y\right)N_{2}}{1-y}=\frac{N_{1}-N_{1}x}{1-y}
Divide both sides by 1-y.
N_{2}=\frac{N_{1}-N_{1}x}{1-y}
Dividing by 1-y undoes the multiplication by 1-y.
N_{2}=\frac{N_{1}\left(1-x\right)}{1-y}
Divide N_{1}-N_{1}x by 1-y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}