Evaluate
192\pi \approx 603.185789489
Share
Copied to clipboard
2\pi \times 4\sqrt{2}\left(\sqrt{32}+\sqrt{128}\right)
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
8\pi \sqrt{2}\left(\sqrt{32}+\sqrt{128}\right)
Multiply 2 and 4 to get 8.
8\pi \sqrt{2}\left(4\sqrt{2}+\sqrt{128}\right)
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
8\pi \sqrt{2}\left(4\sqrt{2}+8\sqrt{2}\right)
Factor 128=8^{2}\times 2. Rewrite the square root of the product \sqrt{8^{2}\times 2} as the product of square roots \sqrt{8^{2}}\sqrt{2}. Take the square root of 8^{2}.
8\pi \sqrt{2}\times 12\sqrt{2}
Combine 4\sqrt{2} and 8\sqrt{2} to get 12\sqrt{2}.
96\pi \sqrt{2}\sqrt{2}
Multiply 8 and 12 to get 96.
96\pi \times 2
Multiply \sqrt{2} and \sqrt{2} to get 2.
192\pi
Multiply 96 and 2 to get 192.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}