Solve for x
x = \frac{\sqrt{129} + 3}{4} \approx 3.589454173
x=\frac{3-\sqrt{129}}{4}\approx -2.089454173
Graph
Share
Copied to clipboard
2\left(x-3x\left(5-2x\right)\right)=10\left(-x\right)+90
Use the distributive property to multiply 10 by -x+9.
2\left(x-3x\left(5-2x\right)\right)-10\left(-x\right)=90
Subtract 10\left(-x\right) from both sides.
2\left(x-3x\left(5-2x\right)\right)-10\left(-x\right)-90=0
Subtract 90 from both sides.
2\left(x-3x\left(5-2x\right)\right)-10\left(-1\right)x-90=0
Multiply -1 and 3 to get -3.
2\left(x-15x+6x^{2}\right)-10\left(-1\right)x-90=0
Use the distributive property to multiply -3x by 5-2x.
2\left(-14x+6x^{2}\right)-10\left(-1\right)x-90=0
Combine x and -15x to get -14x.
-28x+12x^{2}-10\left(-1\right)x-90=0
Use the distributive property to multiply 2 by -14x+6x^{2}.
-28x+12x^{2}+10x-90=0
Multiply -10 and -1 to get 10.
-18x+12x^{2}-90=0
Combine -28x and 10x to get -18x.
12x^{2}-18x-90=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 12\left(-90\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -18 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 12\left(-90\right)}}{2\times 12}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-48\left(-90\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-18\right)±\sqrt{324+4320}}{2\times 12}
Multiply -48 times -90.
x=\frac{-\left(-18\right)±\sqrt{4644}}{2\times 12}
Add 324 to 4320.
x=\frac{-\left(-18\right)±6\sqrt{129}}{2\times 12}
Take the square root of 4644.
x=\frac{18±6\sqrt{129}}{2\times 12}
The opposite of -18 is 18.
x=\frac{18±6\sqrt{129}}{24}
Multiply 2 times 12.
x=\frac{6\sqrt{129}+18}{24}
Now solve the equation x=\frac{18±6\sqrt{129}}{24} when ± is plus. Add 18 to 6\sqrt{129}.
x=\frac{\sqrt{129}+3}{4}
Divide 18+6\sqrt{129} by 24.
x=\frac{18-6\sqrt{129}}{24}
Now solve the equation x=\frac{18±6\sqrt{129}}{24} when ± is minus. Subtract 6\sqrt{129} from 18.
x=\frac{3-\sqrt{129}}{4}
Divide 18-6\sqrt{129} by 24.
x=\frac{\sqrt{129}+3}{4} x=\frac{3-\sqrt{129}}{4}
The equation is now solved.
2\left(x-3x\left(5-2x\right)\right)=10\left(-x\right)+90
Use the distributive property to multiply 10 by -x+9.
2\left(x-3x\left(5-2x\right)\right)-10\left(-x\right)=90
Subtract 10\left(-x\right) from both sides.
2\left(x-3x\left(5-2x\right)\right)-10\left(-1\right)x=90
Multiply -1 and 3 to get -3.
2\left(x-15x+6x^{2}\right)-10\left(-1\right)x=90
Use the distributive property to multiply -3x by 5-2x.
2\left(-14x+6x^{2}\right)-10\left(-1\right)x=90
Combine x and -15x to get -14x.
-28x+12x^{2}-10\left(-1\right)x=90
Use the distributive property to multiply 2 by -14x+6x^{2}.
-28x+12x^{2}+10x=90
Multiply -10 and -1 to get 10.
-18x+12x^{2}=90
Combine -28x and 10x to get -18x.
12x^{2}-18x=90
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{12x^{2}-18x}{12}=\frac{90}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{18}{12}\right)x=\frac{90}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{3}{2}x=\frac{90}{12}
Reduce the fraction \frac{-18}{12} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{3}{2}x=\frac{15}{2}
Reduce the fraction \frac{90}{12} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{15}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{15}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{129}{16}
Add \frac{15}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{129}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{129}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{129}}{4} x-\frac{3}{4}=-\frac{\sqrt{129}}{4}
Simplify.
x=\frac{\sqrt{129}+3}{4} x=\frac{3-\sqrt{129}}{4}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}