Solve for x
x=18
Graph
Quiz
Linear Equation
5 problems similar to:
2 \left( x+2 \right) = \frac{ 4 }{ 5 } \left( 68-x \right)
Share
Copied to clipboard
2x+4=\frac{4}{5}\left(68-x\right)
Use the distributive property to multiply 2 by x+2.
2x+4=\frac{4}{5}\times 68+\frac{4}{5}\left(-1\right)x
Use the distributive property to multiply \frac{4}{5} by 68-x.
2x+4=\frac{4\times 68}{5}+\frac{4}{5}\left(-1\right)x
Express \frac{4}{5}\times 68 as a single fraction.
2x+4=\frac{272}{5}+\frac{4}{5}\left(-1\right)x
Multiply 4 and 68 to get 272.
2x+4=\frac{272}{5}-\frac{4}{5}x
Multiply \frac{4}{5} and -1 to get -\frac{4}{5}.
2x+4+\frac{4}{5}x=\frac{272}{5}
Add \frac{4}{5}x to both sides.
\frac{14}{5}x+4=\frac{272}{5}
Combine 2x and \frac{4}{5}x to get \frac{14}{5}x.
\frac{14}{5}x=\frac{272}{5}-4
Subtract 4 from both sides.
\frac{14}{5}x=\frac{272}{5}-\frac{20}{5}
Convert 4 to fraction \frac{20}{5}.
\frac{14}{5}x=\frac{272-20}{5}
Since \frac{272}{5} and \frac{20}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{14}{5}x=\frac{252}{5}
Subtract 20 from 272 to get 252.
x=\frac{252}{5}\times \frac{5}{14}
Multiply both sides by \frac{5}{14}, the reciprocal of \frac{14}{5}.
x=\frac{252\times 5}{5\times 14}
Multiply \frac{252}{5} times \frac{5}{14} by multiplying numerator times numerator and denominator times denominator.
x=\frac{252}{14}
Cancel out 5 in both numerator and denominator.
x=18
Divide 252 by 14 to get 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}