Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

30\left(65-x\right)-x\left(24-2\left(x-5\right)\right)=550
Multiply 2 and 15 to get 30.
1950-30x-x\left(24-2\left(x-5\right)\right)=550
Use the distributive property to multiply 30 by 65-x.
1950-30x-x\left(24-2x+10\right)=550
Use the distributive property to multiply -2 by x-5.
1950-30x-x\left(34-2x\right)=550
Add 24 and 10 to get 34.
1950-30x-\left(34x-2x^{2}\right)=550
Use the distributive property to multiply x by 34-2x.
1950-30x-34x-\left(-2x^{2}\right)=550
To find the opposite of 34x-2x^{2}, find the opposite of each term.
1950-30x-34x+2x^{2}=550
The opposite of -2x^{2} is 2x^{2}.
1950-64x+2x^{2}=550
Combine -30x and -34x to get -64x.
1950-64x+2x^{2}-550=0
Subtract 550 from both sides.
1400-64x+2x^{2}=0
Subtract 550 from 1950 to get 1400.
2x^{2}-64x+1400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 2\times 1400}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -64 for b, and 1400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 2\times 1400}}{2\times 2}
Square -64.
x=\frac{-\left(-64\right)±\sqrt{4096-8\times 1400}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-64\right)±\sqrt{4096-11200}}{2\times 2}
Multiply -8 times 1400.
x=\frac{-\left(-64\right)±\sqrt{-7104}}{2\times 2}
Add 4096 to -11200.
x=\frac{-\left(-64\right)±8\sqrt{111}i}{2\times 2}
Take the square root of -7104.
x=\frac{64±8\sqrt{111}i}{2\times 2}
The opposite of -64 is 64.
x=\frac{64±8\sqrt{111}i}{4}
Multiply 2 times 2.
x=\frac{64+8\sqrt{111}i}{4}
Now solve the equation x=\frac{64±8\sqrt{111}i}{4} when ± is plus. Add 64 to 8i\sqrt{111}.
x=16+2\sqrt{111}i
Divide 64+8i\sqrt{111} by 4.
x=\frac{-8\sqrt{111}i+64}{4}
Now solve the equation x=\frac{64±8\sqrt{111}i}{4} when ± is minus. Subtract 8i\sqrt{111} from 64.
x=-2\sqrt{111}i+16
Divide 64-8i\sqrt{111} by 4.
x=16+2\sqrt{111}i x=-2\sqrt{111}i+16
The equation is now solved.
30\left(65-x\right)-x\left(24-2\left(x-5\right)\right)=550
Multiply 2 and 15 to get 30.
1950-30x-x\left(24-2\left(x-5\right)\right)=550
Use the distributive property to multiply 30 by 65-x.
1950-30x-x\left(24-2x+10\right)=550
Use the distributive property to multiply -2 by x-5.
1950-30x-x\left(34-2x\right)=550
Add 24 and 10 to get 34.
1950-30x-\left(34x-2x^{2}\right)=550
Use the distributive property to multiply x by 34-2x.
1950-30x-34x-\left(-2x^{2}\right)=550
To find the opposite of 34x-2x^{2}, find the opposite of each term.
1950-30x-34x+2x^{2}=550
The opposite of -2x^{2} is 2x^{2}.
1950-64x+2x^{2}=550
Combine -30x and -34x to get -64x.
-64x+2x^{2}=550-1950
Subtract 1950 from both sides.
-64x+2x^{2}=-1400
Subtract 1950 from 550 to get -1400.
2x^{2}-64x=-1400
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-64x}{2}=-\frac{1400}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{64}{2}\right)x=-\frac{1400}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-32x=-\frac{1400}{2}
Divide -64 by 2.
x^{2}-32x=-700
Divide -1400 by 2.
x^{2}-32x+\left(-16\right)^{2}=-700+\left(-16\right)^{2}
Divide -32, the coefficient of the x term, by 2 to get -16. Then add the square of -16 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-32x+256=-700+256
Square -16.
x^{2}-32x+256=-444
Add -700 to 256.
\left(x-16\right)^{2}=-444
Factor x^{2}-32x+256. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-16\right)^{2}}=\sqrt{-444}
Take the square root of both sides of the equation.
x-16=2\sqrt{111}i x-16=-2\sqrt{111}i
Simplify.
x=16+2\sqrt{111}i x=-2\sqrt{111}i+16
Add 16 to both sides of the equation.