Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(3x-1\right)\left(2x-1\right)=4
Multiply 2 and 3 to get 6.
\left(18x-6\right)\left(2x-1\right)=4
Use the distributive property to multiply 6 by 3x-1.
36x^{2}-30x+6=4
Use the distributive property to multiply 18x-6 by 2x-1 and combine like terms.
36x^{2}-30x+6-4=0
Subtract 4 from both sides.
36x^{2}-30x+2=0
Subtract 4 from 6 to get 2.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 36\times 2}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, -30 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 36\times 2}}{2\times 36}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-144\times 2}}{2\times 36}
Multiply -4 times 36.
x=\frac{-\left(-30\right)±\sqrt{900-288}}{2\times 36}
Multiply -144 times 2.
x=\frac{-\left(-30\right)±\sqrt{612}}{2\times 36}
Add 900 to -288.
x=\frac{-\left(-30\right)±6\sqrt{17}}{2\times 36}
Take the square root of 612.
x=\frac{30±6\sqrt{17}}{2\times 36}
The opposite of -30 is 30.
x=\frac{30±6\sqrt{17}}{72}
Multiply 2 times 36.
x=\frac{6\sqrt{17}+30}{72}
Now solve the equation x=\frac{30±6\sqrt{17}}{72} when ± is plus. Add 30 to 6\sqrt{17}.
x=\frac{\sqrt{17}+5}{12}
Divide 30+6\sqrt{17} by 72.
x=\frac{30-6\sqrt{17}}{72}
Now solve the equation x=\frac{30±6\sqrt{17}}{72} when ± is minus. Subtract 6\sqrt{17} from 30.
x=\frac{5-\sqrt{17}}{12}
Divide 30-6\sqrt{17} by 72.
x=\frac{\sqrt{17}+5}{12} x=\frac{5-\sqrt{17}}{12}
The equation is now solved.
6\left(3x-1\right)\left(2x-1\right)=4
Multiply 2 and 3 to get 6.
\left(18x-6\right)\left(2x-1\right)=4
Use the distributive property to multiply 6 by 3x-1.
36x^{2}-30x+6=4
Use the distributive property to multiply 18x-6 by 2x-1 and combine like terms.
36x^{2}-30x=4-6
Subtract 6 from both sides.
36x^{2}-30x=-2
Subtract 6 from 4 to get -2.
\frac{36x^{2}-30x}{36}=-\frac{2}{36}
Divide both sides by 36.
x^{2}+\left(-\frac{30}{36}\right)x=-\frac{2}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}-\frac{5}{6}x=-\frac{2}{36}
Reduce the fraction \frac{-30}{36} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{5}{6}x=-\frac{1}{18}
Reduce the fraction \frac{-2}{36} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{6}x+\left(-\frac{5}{12}\right)^{2}=-\frac{1}{18}+\left(-\frac{5}{12}\right)^{2}
Divide -\frac{5}{6}, the coefficient of the x term, by 2 to get -\frac{5}{12}. Then add the square of -\frac{5}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{6}x+\frac{25}{144}=-\frac{1}{18}+\frac{25}{144}
Square -\frac{5}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{6}x+\frac{25}{144}=\frac{17}{144}
Add -\frac{1}{18} to \frac{25}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{12}\right)^{2}=\frac{17}{144}
Factor x^{2}-\frac{5}{6}x+\frac{25}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{12}\right)^{2}}=\sqrt{\frac{17}{144}}
Take the square root of both sides of the equation.
x-\frac{5}{12}=\frac{\sqrt{17}}{12} x-\frac{5}{12}=-\frac{\sqrt{17}}{12}
Simplify.
x=\frac{\sqrt{17}+5}{12} x=\frac{5-\sqrt{17}}{12}
Add \frac{5}{12} to both sides of the equation.