Solve for x
x=\frac{\sqrt{41}-5}{2}\approx 0.701562119
x=\frac{-\sqrt{41}-5}{2}\approx -5.701562119
Graph
Share
Copied to clipboard
6x^{2}+4x+2-\left(5x^{2}-x+6\right)=0
Use the distributive property to multiply 2 by 3x^{2}+2x+1.
6x^{2}+4x+2-5x^{2}+x-6=0
To find the opposite of 5x^{2}-x+6, find the opposite of each term.
x^{2}+4x+2+x-6=0
Combine 6x^{2} and -5x^{2} to get x^{2}.
x^{2}+5x+2-6=0
Combine 4x and x to get 5x.
x^{2}+5x-4=0
Subtract 6 from 2 to get -4.
x=\frac{-5±\sqrt{5^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-4\right)}}{2}
Square 5.
x=\frac{-5±\sqrt{25+16}}{2}
Multiply -4 times -4.
x=\frac{-5±\sqrt{41}}{2}
Add 25 to 16.
x=\frac{\sqrt{41}-5}{2}
Now solve the equation x=\frac{-5±\sqrt{41}}{2} when ± is plus. Add -5 to \sqrt{41}.
x=\frac{-\sqrt{41}-5}{2}
Now solve the equation x=\frac{-5±\sqrt{41}}{2} when ± is minus. Subtract \sqrt{41} from -5.
x=\frac{\sqrt{41}-5}{2} x=\frac{-\sqrt{41}-5}{2}
The equation is now solved.
6x^{2}+4x+2-\left(5x^{2}-x+6\right)=0
Use the distributive property to multiply 2 by 3x^{2}+2x+1.
6x^{2}+4x+2-5x^{2}+x-6=0
To find the opposite of 5x^{2}-x+6, find the opposite of each term.
x^{2}+4x+2+x-6=0
Combine 6x^{2} and -5x^{2} to get x^{2}.
x^{2}+5x+2-6=0
Combine 4x and x to get 5x.
x^{2}+5x-4=0
Subtract 6 from 2 to get -4.
x^{2}+5x=4
Add 4 to both sides. Anything plus zero gives itself.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=4+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=4+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{41}{4}
Add 4 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{41}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{41}}{2} x+\frac{5}{2}=-\frac{\sqrt{41}}{2}
Simplify.
x=\frac{\sqrt{41}-5}{2} x=\frac{-\sqrt{41}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}