Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+4x+2-\left(5x^{2}-x+6\right)=0
Use the distributive property to multiply 2 by 3x^{2}+2x+1.
6x^{2}+4x+2-5x^{2}+x-6=0
To find the opposite of 5x^{2}-x+6, find the opposite of each term.
x^{2}+4x+2+x-6=0
Combine 6x^{2} and -5x^{2} to get x^{2}.
x^{2}+5x+2-6=0
Combine 4x and x to get 5x.
x^{2}+5x-4=0
Subtract 6 from 2 to get -4.
x=\frac{-5±\sqrt{5^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-4\right)}}{2}
Square 5.
x=\frac{-5±\sqrt{25+16}}{2}
Multiply -4 times -4.
x=\frac{-5±\sqrt{41}}{2}
Add 25 to 16.
x=\frac{\sqrt{41}-5}{2}
Now solve the equation x=\frac{-5±\sqrt{41}}{2} when ± is plus. Add -5 to \sqrt{41}.
x=\frac{-\sqrt{41}-5}{2}
Now solve the equation x=\frac{-5±\sqrt{41}}{2} when ± is minus. Subtract \sqrt{41} from -5.
x=\frac{\sqrt{41}-5}{2} x=\frac{-\sqrt{41}-5}{2}
The equation is now solved.
6x^{2}+4x+2-\left(5x^{2}-x+6\right)=0
Use the distributive property to multiply 2 by 3x^{2}+2x+1.
6x^{2}+4x+2-5x^{2}+x-6=0
To find the opposite of 5x^{2}-x+6, find the opposite of each term.
x^{2}+4x+2+x-6=0
Combine 6x^{2} and -5x^{2} to get x^{2}.
x^{2}+5x+2-6=0
Combine 4x and x to get 5x.
x^{2}+5x-4=0
Subtract 6 from 2 to get -4.
x^{2}+5x=4
Add 4 to both sides. Anything plus zero gives itself.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=4+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=4+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{41}{4}
Add 4 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{41}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{41}}{2} x+\frac{5}{2}=-\frac{\sqrt{41}}{2}
Simplify.
x=\frac{\sqrt{41}-5}{2} x=\frac{-\sqrt{41}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.