Skip to main content
Solve for λ
Tick mark Image

Similar Problems from Web Search

Share

2\lambda ^{2}-2\lambda -19=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
\lambda =\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-19\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, -2 for b, and -19 for c in the quadratic formula.
\lambda =\frac{2±2\sqrt{39}}{4}
Do the calculations.
\lambda =\frac{\sqrt{39}+1}{2} \lambda =\frac{1-\sqrt{39}}{2}
Solve the equation \lambda =\frac{2±2\sqrt{39}}{4} when ± is plus and when ± is minus.
2\left(\lambda -\frac{\sqrt{39}+1}{2}\right)\left(\lambda -\frac{1-\sqrt{39}}{2}\right)\leq 0
Rewrite the inequality by using the obtained solutions.
\lambda -\frac{\sqrt{39}+1}{2}\geq 0 \lambda -\frac{1-\sqrt{39}}{2}\leq 0
For the product to be ≤0, one of the values \lambda -\frac{\sqrt{39}+1}{2} and \lambda -\frac{1-\sqrt{39}}{2} has to be ≥0 and the other has to be ≤0. Consider the case when \lambda -\frac{\sqrt{39}+1}{2}\geq 0 and \lambda -\frac{1-\sqrt{39}}{2}\leq 0.
\lambda \in \emptyset
This is false for any \lambda .
\lambda -\frac{1-\sqrt{39}}{2}\geq 0 \lambda -\frac{\sqrt{39}+1}{2}\leq 0
Consider the case when \lambda -\frac{\sqrt{39}+1}{2}\leq 0 and \lambda -\frac{1-\sqrt{39}}{2}\geq 0.
\lambda \in \begin{bmatrix}\frac{1-\sqrt{39}}{2},\frac{\sqrt{39}+1}{2}\end{bmatrix}
The solution satisfying both inequalities is \lambda \in \left[\frac{1-\sqrt{39}}{2},\frac{\sqrt{39}+1}{2}\right].
\lambda \in \begin{bmatrix}\frac{1-\sqrt{39}}{2},\frac{\sqrt{39}+1}{2}\end{bmatrix}
The final solution is the union of the obtained solutions.