Solve for λ
\lambda =\frac{7+\sqrt{3}i}{2}\approx 3.5+0.866025404i
\lambda =\frac{-\sqrt{3}i+7}{2}\approx 3.5-0.866025404i
Share
Copied to clipboard
2\lambda ^{2}-10\lambda +18-4\lambda =-8
Subtract 4\lambda from both sides.
2\lambda ^{2}-14\lambda +18=-8
Combine -10\lambda and -4\lambda to get -14\lambda .
2\lambda ^{2}-14\lambda +18+8=0
Add 8 to both sides.
2\lambda ^{2}-14\lambda +26=0
Add 18 and 8 to get 26.
\lambda =\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\times 26}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -14 for b, and 26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-\left(-14\right)±\sqrt{196-4\times 2\times 26}}{2\times 2}
Square -14.
\lambda =\frac{-\left(-14\right)±\sqrt{196-8\times 26}}{2\times 2}
Multiply -4 times 2.
\lambda =\frac{-\left(-14\right)±\sqrt{196-208}}{2\times 2}
Multiply -8 times 26.
\lambda =\frac{-\left(-14\right)±\sqrt{-12}}{2\times 2}
Add 196 to -208.
\lambda =\frac{-\left(-14\right)±2\sqrt{3}i}{2\times 2}
Take the square root of -12.
\lambda =\frac{14±2\sqrt{3}i}{2\times 2}
The opposite of -14 is 14.
\lambda =\frac{14±2\sqrt{3}i}{4}
Multiply 2 times 2.
\lambda =\frac{14+2\sqrt{3}i}{4}
Now solve the equation \lambda =\frac{14±2\sqrt{3}i}{4} when ± is plus. Add 14 to 2i\sqrt{3}.
\lambda =\frac{7+\sqrt{3}i}{2}
Divide 14+2i\sqrt{3} by 4.
\lambda =\frac{-2\sqrt{3}i+14}{4}
Now solve the equation \lambda =\frac{14±2\sqrt{3}i}{4} when ± is minus. Subtract 2i\sqrt{3} from 14.
\lambda =\frac{-\sqrt{3}i+7}{2}
Divide 14-2i\sqrt{3} by 4.
\lambda =\frac{7+\sqrt{3}i}{2} \lambda =\frac{-\sqrt{3}i+7}{2}
The equation is now solved.
2\lambda ^{2}-10\lambda +18-4\lambda =-8
Subtract 4\lambda from both sides.
2\lambda ^{2}-14\lambda +18=-8
Combine -10\lambda and -4\lambda to get -14\lambda .
2\lambda ^{2}-14\lambda =-8-18
Subtract 18 from both sides.
2\lambda ^{2}-14\lambda =-26
Subtract 18 from -8 to get -26.
\frac{2\lambda ^{2}-14\lambda }{2}=-\frac{26}{2}
Divide both sides by 2.
\lambda ^{2}+\left(-\frac{14}{2}\right)\lambda =-\frac{26}{2}
Dividing by 2 undoes the multiplication by 2.
\lambda ^{2}-7\lambda =-\frac{26}{2}
Divide -14 by 2.
\lambda ^{2}-7\lambda =-13
Divide -26 by 2.
\lambda ^{2}-7\lambda +\left(-\frac{7}{2}\right)^{2}=-13+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}-7\lambda +\frac{49}{4}=-13+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}-7\lambda +\frac{49}{4}=-\frac{3}{4}
Add -13 to \frac{49}{4}.
\left(\lambda -\frac{7}{2}\right)^{2}=-\frac{3}{4}
Factor \lambda ^{2}-7\lambda +\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda -\frac{7}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
\lambda -\frac{7}{2}=\frac{\sqrt{3}i}{2} \lambda -\frac{7}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
\lambda =\frac{7+\sqrt{3}i}{2} \lambda =\frac{-\sqrt{3}i+7}{2}
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}