Solve for x
x = \frac{157}{96} = 1\frac{61}{96} \approx 1.635416667
Graph
Share
Copied to clipboard
3\left(2\times 32+7\right)-96x=56
Multiply both sides of the equation by 96, the least common multiple of 32,12.
3\left(64+7\right)-96x=56
Multiply 2 and 32 to get 64.
3\times 71-96x=56
Add 64 and 7 to get 71.
213-96x=56
Multiply 3 and 71 to get 213.
-96x=56-213
Subtract 213 from both sides.
-96x=-157
Subtract 213 from 56 to get -157.
x=\frac{-157}{-96}
Divide both sides by -96.
x=\frac{157}{96}
Fraction \frac{-157}{-96} can be simplified to \frac{157}{96} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}