Evaluate
\frac{3699}{40}=92.475
Factor
\frac{3 ^ {3} \cdot 137}{2 ^ {3} \cdot 5} = 92\frac{19}{40} = 92.475
Share
Copied to clipboard
\frac{14+4}{7}\times 15+\frac{5}{8}\times 35+\frac{1\times 7+3}{7}+\frac{29\times 5+8}{5}
Multiply 2 and 7 to get 14.
\frac{18}{7}\times 15+\frac{5}{8}\times 35+\frac{1\times 7+3}{7}+\frac{29\times 5+8}{5}
Add 14 and 4 to get 18.
\frac{18\times 15}{7}+\frac{5}{8}\times 35+\frac{1\times 7+3}{7}+\frac{29\times 5+8}{5}
Express \frac{18}{7}\times 15 as a single fraction.
\frac{270}{7}+\frac{5}{8}\times 35+\frac{1\times 7+3}{7}+\frac{29\times 5+8}{5}
Multiply 18 and 15 to get 270.
\frac{270}{7}+\frac{5\times 35}{8}+\frac{1\times 7+3}{7}+\frac{29\times 5+8}{5}
Express \frac{5}{8}\times 35 as a single fraction.
\frac{270}{7}+\frac{175}{8}+\frac{1\times 7+3}{7}+\frac{29\times 5+8}{5}
Multiply 5 and 35 to get 175.
\frac{2160}{56}+\frac{1225}{56}+\frac{1\times 7+3}{7}+\frac{29\times 5+8}{5}
Least common multiple of 7 and 8 is 56. Convert \frac{270}{7} and \frac{175}{8} to fractions with denominator 56.
\frac{2160+1225}{56}+\frac{1\times 7+3}{7}+\frac{29\times 5+8}{5}
Since \frac{2160}{56} and \frac{1225}{56} have the same denominator, add them by adding their numerators.
\frac{3385}{56}+\frac{1\times 7+3}{7}+\frac{29\times 5+8}{5}
Add 2160 and 1225 to get 3385.
\frac{3385}{56}+\frac{7+3}{7}+\frac{29\times 5+8}{5}
Multiply 1 and 7 to get 7.
\frac{3385}{56}+\frac{10}{7}+\frac{29\times 5+8}{5}
Add 7 and 3 to get 10.
\frac{3385}{56}+\frac{80}{56}+\frac{29\times 5+8}{5}
Least common multiple of 56 and 7 is 56. Convert \frac{3385}{56} and \frac{10}{7} to fractions with denominator 56.
\frac{3385+80}{56}+\frac{29\times 5+8}{5}
Since \frac{3385}{56} and \frac{80}{56} have the same denominator, add them by adding their numerators.
\frac{3465}{56}+\frac{29\times 5+8}{5}
Add 3385 and 80 to get 3465.
\frac{495}{8}+\frac{29\times 5+8}{5}
Reduce the fraction \frac{3465}{56} to lowest terms by extracting and canceling out 7.
\frac{495}{8}+\frac{145+8}{5}
Multiply 29 and 5 to get 145.
\frac{495}{8}+\frac{153}{5}
Add 145 and 8 to get 153.
\frac{2475}{40}+\frac{1224}{40}
Least common multiple of 8 and 5 is 40. Convert \frac{495}{8} and \frac{153}{5} to fractions with denominator 40.
\frac{2475+1224}{40}
Since \frac{2475}{40} and \frac{1224}{40} have the same denominator, add them by adding their numerators.
\frac{3699}{40}
Add 2475 and 1224 to get 3699.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}