Evaluate
\frac{47}{21}\approx 2.238095238
Factor
\frac{47}{3 \cdot 7} = 2\frac{5}{21} = 2.238095238095238
Share
Copied to clipboard
\frac{\frac{40+7}{20}}{\frac{3}{4}+\frac{9}{2}\times \frac{1}{15}}
Multiply 2 and 20 to get 40.
\frac{\frac{47}{20}}{\frac{3}{4}+\frac{9}{2}\times \frac{1}{15}}
Add 40 and 7 to get 47.
\frac{\frac{47}{20}}{\frac{3}{4}+\frac{9\times 1}{2\times 15}}
Multiply \frac{9}{2} times \frac{1}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{47}{20}}{\frac{3}{4}+\frac{9}{30}}
Do the multiplications in the fraction \frac{9\times 1}{2\times 15}.
\frac{\frac{47}{20}}{\frac{3}{4}+\frac{3}{10}}
Reduce the fraction \frac{9}{30} to lowest terms by extracting and canceling out 3.
\frac{\frac{47}{20}}{\frac{15}{20}+\frac{6}{20}}
Least common multiple of 4 and 10 is 20. Convert \frac{3}{4} and \frac{3}{10} to fractions with denominator 20.
\frac{\frac{47}{20}}{\frac{15+6}{20}}
Since \frac{15}{20} and \frac{6}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{47}{20}}{\frac{21}{20}}
Add 15 and 6 to get 21.
\frac{47}{20}\times \frac{20}{21}
Divide \frac{47}{20} by \frac{21}{20} by multiplying \frac{47}{20} by the reciprocal of \frac{21}{20}.
\frac{47\times 20}{20\times 21}
Multiply \frac{47}{20} times \frac{20}{21} by multiplying numerator times numerator and denominator times denominator.
\frac{47}{21}
Cancel out 20 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}