Evaluate
\frac{487}{70}\approx 6.957142857
Factor
\frac{487}{2 \cdot 5 \cdot 7} = 6\frac{67}{70} = 6.957142857142857
Share
Copied to clipboard
\frac{14+5}{7}+\frac{3}{10}-4\times \frac{-69}{70}
Multiply 2 and 7 to get 14.
\frac{19}{7}+\frac{3}{10}-4\times \frac{-69}{70}
Add 14 and 5 to get 19.
\frac{190}{70}+\frac{21}{70}-4\times \frac{-69}{70}
Least common multiple of 7 and 10 is 70. Convert \frac{19}{7} and \frac{3}{10} to fractions with denominator 70.
\frac{190+21}{70}-4\times \frac{-69}{70}
Since \frac{190}{70} and \frac{21}{70} have the same denominator, add them by adding their numerators.
\frac{211}{70}-4\times \frac{-69}{70}
Add 190 and 21 to get 211.
\frac{211}{70}-4\left(-\frac{69}{70}\right)
Fraction \frac{-69}{70} can be rewritten as -\frac{69}{70} by extracting the negative sign.
\frac{211}{70}-\frac{4\left(-69\right)}{70}
Express 4\left(-\frac{69}{70}\right) as a single fraction.
\frac{211}{70}-\frac{-276}{70}
Multiply 4 and -69 to get -276.
\frac{211}{70}-\left(-\frac{138}{35}\right)
Reduce the fraction \frac{-276}{70} to lowest terms by extracting and canceling out 2.
\frac{211}{70}+\frac{138}{35}
The opposite of -\frac{138}{35} is \frac{138}{35}.
\frac{211}{70}+\frac{276}{70}
Least common multiple of 70 and 35 is 70. Convert \frac{211}{70} and \frac{138}{35} to fractions with denominator 70.
\frac{211+276}{70}
Since \frac{211}{70} and \frac{276}{70} have the same denominator, add them by adding their numerators.
\frac{487}{70}
Add 211 and 276 to get 487.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}