Evaluate
\frac{11}{19}\approx 0.578947368
Factor
\frac{11}{19} = 0.5789473684210527
Share
Copied to clipboard
\frac{\frac{18+4}{9}}{\frac{\frac{7\times 12+5}{12}-5.25}{1.5}+10\times \frac{5}{18}}
Multiply 2 and 9 to get 18.
\frac{\frac{22}{9}}{\frac{\frac{7\times 12+5}{12}-5.25}{1.5}+10\times \frac{5}{18}}
Add 18 and 4 to get 22.
\frac{\frac{22}{9}}{\frac{\frac{84+5}{12}-5.25}{1.5}+10\times \frac{5}{18}}
Multiply 7 and 12 to get 84.
\frac{\frac{22}{9}}{\frac{\frac{89}{12}-5.25}{1.5}+10\times \frac{5}{18}}
Add 84 and 5 to get 89.
\frac{\frac{22}{9}}{\frac{\frac{89}{12}-\frac{21}{4}}{1.5}+10\times \frac{5}{18}}
Convert decimal number 5.25 to fraction \frac{525}{100}. Reduce the fraction \frac{525}{100} to lowest terms by extracting and canceling out 25.
\frac{\frac{22}{9}}{\frac{\frac{89}{12}-\frac{63}{12}}{1.5}+10\times \frac{5}{18}}
Least common multiple of 12 and 4 is 12. Convert \frac{89}{12} and \frac{21}{4} to fractions with denominator 12.
\frac{\frac{22}{9}}{\frac{\frac{89-63}{12}}{1.5}+10\times \frac{5}{18}}
Since \frac{89}{12} and \frac{63}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{22}{9}}{\frac{\frac{26}{12}}{1.5}+10\times \frac{5}{18}}
Subtract 63 from 89 to get 26.
\frac{\frac{22}{9}}{\frac{\frac{13}{6}}{1.5}+10\times \frac{5}{18}}
Reduce the fraction \frac{26}{12} to lowest terms by extracting and canceling out 2.
\frac{\frac{22}{9}}{\frac{13}{6\times 1.5}+10\times \frac{5}{18}}
Express \frac{\frac{13}{6}}{1.5} as a single fraction.
\frac{\frac{22}{9}}{\frac{13}{9}+10\times \frac{5}{18}}
Multiply 6 and 1.5 to get 9.
\frac{\frac{22}{9}}{\frac{13}{9}+\frac{10\times 5}{18}}
Express 10\times \frac{5}{18} as a single fraction.
\frac{\frac{22}{9}}{\frac{13}{9}+\frac{50}{18}}
Multiply 10 and 5 to get 50.
\frac{\frac{22}{9}}{\frac{13}{9}+\frac{25}{9}}
Reduce the fraction \frac{50}{18} to lowest terms by extracting and canceling out 2.
\frac{\frac{22}{9}}{\frac{13+25}{9}}
Since \frac{13}{9} and \frac{25}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{22}{9}}{\frac{38}{9}}
Add 13 and 25 to get 38.
\frac{22}{9}\times \frac{9}{38}
Divide \frac{22}{9} by \frac{38}{9} by multiplying \frac{22}{9} by the reciprocal of \frac{38}{9}.
\frac{22\times 9}{9\times 38}
Multiply \frac{22}{9} times \frac{9}{38} by multiplying numerator times numerator and denominator times denominator.
\frac{22}{38}
Cancel out 9 in both numerator and denominator.
\frac{11}{19}
Reduce the fraction \frac{22}{38} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}