Evaluate
\frac{14}{3}\approx 4.666666667
Factor
\frac{2 \cdot 7}{3} = 4\frac{2}{3} = 4.666666666666667
Share
Copied to clipboard
\frac{30+4}{15}-\frac{2-\frac{1\times 15+1}{15}}{\frac{4}{9}}+\frac{9}{2}
Multiply 2 and 15 to get 30.
\frac{34}{15}-\frac{2-\frac{1\times 15+1}{15}}{\frac{4}{9}}+\frac{9}{2}
Add 30 and 4 to get 34.
\frac{34}{15}-\frac{2-\frac{15+1}{15}}{\frac{4}{9}}+\frac{9}{2}
Multiply 1 and 15 to get 15.
\frac{34}{15}-\frac{2-\frac{16}{15}}{\frac{4}{9}}+\frac{9}{2}
Add 15 and 1 to get 16.
\frac{34}{15}-\frac{\frac{30}{15}-\frac{16}{15}}{\frac{4}{9}}+\frac{9}{2}
Convert 2 to fraction \frac{30}{15}.
\frac{34}{15}-\frac{\frac{30-16}{15}}{\frac{4}{9}}+\frac{9}{2}
Since \frac{30}{15} and \frac{16}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{34}{15}-\frac{\frac{14}{15}}{\frac{4}{9}}+\frac{9}{2}
Subtract 16 from 30 to get 14.
\frac{34}{15}-\frac{14}{15}\times \frac{9}{4}+\frac{9}{2}
Divide \frac{14}{15} by \frac{4}{9} by multiplying \frac{14}{15} by the reciprocal of \frac{4}{9}.
\frac{34}{15}-\frac{14\times 9}{15\times 4}+\frac{9}{2}
Multiply \frac{14}{15} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{34}{15}-\frac{126}{60}+\frac{9}{2}
Do the multiplications in the fraction \frac{14\times 9}{15\times 4}.
\frac{34}{15}-\frac{21}{10}+\frac{9}{2}
Reduce the fraction \frac{126}{60} to lowest terms by extracting and canceling out 6.
\frac{68}{30}-\frac{63}{30}+\frac{9}{2}
Least common multiple of 15 and 10 is 30. Convert \frac{34}{15} and \frac{21}{10} to fractions with denominator 30.
\frac{68-63}{30}+\frac{9}{2}
Since \frac{68}{30} and \frac{63}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{30}+\frac{9}{2}
Subtract 63 from 68 to get 5.
\frac{1}{6}+\frac{9}{2}
Reduce the fraction \frac{5}{30} to lowest terms by extracting and canceling out 5.
\frac{1}{6}+\frac{27}{6}
Least common multiple of 6 and 2 is 6. Convert \frac{1}{6} and \frac{9}{2} to fractions with denominator 6.
\frac{1+27}{6}
Since \frac{1}{6} and \frac{27}{6} have the same denominator, add them by adding their numerators.
\frac{28}{6}
Add 1 and 27 to get 28.
\frac{14}{3}
Reduce the fraction \frac{28}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}