Evaluate
-\frac{7}{8}=-0.875
Factor
-\frac{7}{8} = -0.875
Share
Copied to clipboard
\frac{8+3}{4}-\left(-\frac{1\times 2+1}{2}\right)-\frac{5}{6}-\left(-\frac{3}{8}\right)-\frac{4\times 3+2}{3}
Multiply 2 and 4 to get 8.
\frac{11}{4}-\left(-\frac{1\times 2+1}{2}\right)-\frac{5}{6}-\left(-\frac{3}{8}\right)-\frac{4\times 3+2}{3}
Add 8 and 3 to get 11.
\frac{11}{4}-\left(-\frac{2+1}{2}\right)-\frac{5}{6}-\left(-\frac{3}{8}\right)-\frac{4\times 3+2}{3}
Multiply 1 and 2 to get 2.
\frac{11}{4}-\left(-\frac{3}{2}\right)-\frac{5}{6}-\left(-\frac{3}{8}\right)-\frac{4\times 3+2}{3}
Add 2 and 1 to get 3.
\frac{11}{4}+\frac{3}{2}-\frac{5}{6}-\left(-\frac{3}{8}\right)-\frac{4\times 3+2}{3}
The opposite of -\frac{3}{2} is \frac{3}{2}.
\frac{11}{4}+\frac{6}{4}-\frac{5}{6}-\left(-\frac{3}{8}\right)-\frac{4\times 3+2}{3}
Least common multiple of 4 and 2 is 4. Convert \frac{11}{4} and \frac{3}{2} to fractions with denominator 4.
\frac{11+6}{4}-\frac{5}{6}-\left(-\frac{3}{8}\right)-\frac{4\times 3+2}{3}
Since \frac{11}{4} and \frac{6}{4} have the same denominator, add them by adding their numerators.
\frac{17}{4}-\frac{5}{6}-\left(-\frac{3}{8}\right)-\frac{4\times 3+2}{3}
Add 11 and 6 to get 17.
\frac{51}{12}-\frac{10}{12}-\left(-\frac{3}{8}\right)-\frac{4\times 3+2}{3}
Least common multiple of 4 and 6 is 12. Convert \frac{17}{4} and \frac{5}{6} to fractions with denominator 12.
\frac{51-10}{12}-\left(-\frac{3}{8}\right)-\frac{4\times 3+2}{3}
Since \frac{51}{12} and \frac{10}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{12}-\left(-\frac{3}{8}\right)-\frac{4\times 3+2}{3}
Subtract 10 from 51 to get 41.
\frac{41}{12}+\frac{3}{8}-\frac{4\times 3+2}{3}
The opposite of -\frac{3}{8} is \frac{3}{8}.
\frac{82}{24}+\frac{9}{24}-\frac{4\times 3+2}{3}
Least common multiple of 12 and 8 is 24. Convert \frac{41}{12} and \frac{3}{8} to fractions with denominator 24.
\frac{82+9}{24}-\frac{4\times 3+2}{3}
Since \frac{82}{24} and \frac{9}{24} have the same denominator, add them by adding their numerators.
\frac{91}{24}-\frac{4\times 3+2}{3}
Add 82 and 9 to get 91.
\frac{91}{24}-\frac{12+2}{3}
Multiply 4 and 3 to get 12.
\frac{91}{24}-\frac{14}{3}
Add 12 and 2 to get 14.
\frac{91}{24}-\frac{112}{24}
Least common multiple of 24 and 3 is 24. Convert \frac{91}{24} and \frac{14}{3} to fractions with denominator 24.
\frac{91-112}{24}
Since \frac{91}{24} and \frac{112}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{-21}{24}
Subtract 112 from 91 to get -21.
-\frac{7}{8}
Reduce the fraction \frac{-21}{24} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}