Solve for x
x=\frac{\sqrt{2}-3}{7}\approx -0.22654092
Graph
Share
Copied to clipboard
2\left(2x+1\right)-\sqrt{2}\left(x+1\right)=0
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
4x+2-\sqrt{2}\left(x+1\right)=0
Use the distributive property to multiply 2 by 2x+1.
4x+2-\sqrt{2}x-\sqrt{2}=0
Use the distributive property to multiply -\sqrt{2} by x+1.
4x-\sqrt{2}x-\sqrt{2}=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
4x-\sqrt{2}x=-2+\sqrt{2}
Add \sqrt{2} to both sides.
\left(4-\sqrt{2}\right)x=-2+\sqrt{2}
Combine all terms containing x.
\left(4-\sqrt{2}\right)x=\sqrt{2}-2
The equation is in standard form.
\frac{\left(4-\sqrt{2}\right)x}{4-\sqrt{2}}=\frac{\sqrt{2}-2}{4-\sqrt{2}}
Divide both sides by 4-\sqrt{2}.
x=\frac{\sqrt{2}-2}{4-\sqrt{2}}
Dividing by 4-\sqrt{2} undoes the multiplication by 4-\sqrt{2}.
x=\frac{\sqrt{2}-3}{7}
Divide -2+\sqrt{2} by 4-\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}