Skip to main content
Solve for o
Tick mark Image

Similar Problems from Web Search

Share

2\times 9+2-\left(1\times 9+5\right)=6o\times \frac{4\times 9+2}{9}-8\times \frac{8}{9}
Multiply both sides of the equation by 9.
18+2-\left(1\times 9+5\right)=6o\times \frac{4\times 9+2}{9}-8\times \frac{8}{9}
Multiply 2 and 9 to get 18.
20-\left(1\times 9+5\right)=6o\times \frac{4\times 9+2}{9}-8\times \frac{8}{9}
Add 18 and 2 to get 20.
20-\left(9+5\right)=6o\times \frac{4\times 9+2}{9}-8\times \frac{8}{9}
Multiply 1 and 9 to get 9.
20-14=6o\times \frac{4\times 9+2}{9}-8\times \frac{8}{9}
Add 9 and 5 to get 14.
6=6o\times \frac{4\times 9+2}{9}-8\times \frac{8}{9}
Subtract 14 from 20 to get 6.
6=6o\times \frac{36+2}{9}-8\times \frac{8}{9}
Multiply 4 and 9 to get 36.
6=6o\times \frac{38}{9}-8\times \frac{8}{9}
Add 36 and 2 to get 38.
6=\frac{6\times 38}{9}o-8\times \frac{8}{9}
Express 6\times \frac{38}{9} as a single fraction.
6=\frac{228}{9}o-8\times \frac{8}{9}
Multiply 6 and 38 to get 228.
6=\frac{76}{3}o-8\times \frac{8}{9}
Reduce the fraction \frac{228}{9} to lowest terms by extracting and canceling out 3.
6=\frac{76}{3}o-\frac{8\times 8}{9}
Express 8\times \frac{8}{9} as a single fraction.
6=\frac{76}{3}o-\frac{64}{9}
Multiply 8 and 8 to get 64.
\frac{76}{3}o-\frac{64}{9}=6
Swap sides so that all variable terms are on the left hand side.
\frac{76}{3}o=6+\frac{64}{9}
Add \frac{64}{9} to both sides.
\frac{76}{3}o=\frac{54}{9}+\frac{64}{9}
Convert 6 to fraction \frac{54}{9}.
\frac{76}{3}o=\frac{54+64}{9}
Since \frac{54}{9} and \frac{64}{9} have the same denominator, add them by adding their numerators.
\frac{76}{3}o=\frac{118}{9}
Add 54 and 64 to get 118.
o=\frac{118}{9}\times \frac{3}{76}
Multiply both sides by \frac{3}{76}, the reciprocal of \frac{76}{3}.
o=\frac{118\times 3}{9\times 76}
Multiply \frac{118}{9} times \frac{3}{76} by multiplying numerator times numerator and denominator times denominator.
o=\frac{354}{684}
Do the multiplications in the fraction \frac{118\times 3}{9\times 76}.
o=\frac{59}{114}
Reduce the fraction \frac{354}{684} to lowest terms by extracting and canceling out 6.