2 \frac { 2 } { 9 } - 1 \frac { 5 } { 9 } = \frac { 6 } { 9 } \quad \text { o } 4 \frac { 2 } { 9 } - \frac { 8 } { 9 } \frac { 8 } { 9 }
Solve for o
o=\frac{59}{114}\approx 0.51754386
Share
Copied to clipboard
2\times 9+2-\left(1\times 9+5\right)=6o\times \frac{4\times 9+2}{9}-8\times \frac{8}{9}
Multiply both sides of the equation by 9.
18+2-\left(1\times 9+5\right)=6o\times \frac{4\times 9+2}{9}-8\times \frac{8}{9}
Multiply 2 and 9 to get 18.
20-\left(1\times 9+5\right)=6o\times \frac{4\times 9+2}{9}-8\times \frac{8}{9}
Add 18 and 2 to get 20.
20-\left(9+5\right)=6o\times \frac{4\times 9+2}{9}-8\times \frac{8}{9}
Multiply 1 and 9 to get 9.
20-14=6o\times \frac{4\times 9+2}{9}-8\times \frac{8}{9}
Add 9 and 5 to get 14.
6=6o\times \frac{4\times 9+2}{9}-8\times \frac{8}{9}
Subtract 14 from 20 to get 6.
6=6o\times \frac{36+2}{9}-8\times \frac{8}{9}
Multiply 4 and 9 to get 36.
6=6o\times \frac{38}{9}-8\times \frac{8}{9}
Add 36 and 2 to get 38.
6=\frac{6\times 38}{9}o-8\times \frac{8}{9}
Express 6\times \frac{38}{9} as a single fraction.
6=\frac{228}{9}o-8\times \frac{8}{9}
Multiply 6 and 38 to get 228.
6=\frac{76}{3}o-8\times \frac{8}{9}
Reduce the fraction \frac{228}{9} to lowest terms by extracting and canceling out 3.
6=\frac{76}{3}o-\frac{8\times 8}{9}
Express 8\times \frac{8}{9} as a single fraction.
6=\frac{76}{3}o-\frac{64}{9}
Multiply 8 and 8 to get 64.
\frac{76}{3}o-\frac{64}{9}=6
Swap sides so that all variable terms are on the left hand side.
\frac{76}{3}o=6+\frac{64}{9}
Add \frac{64}{9} to both sides.
\frac{76}{3}o=\frac{54}{9}+\frac{64}{9}
Convert 6 to fraction \frac{54}{9}.
\frac{76}{3}o=\frac{54+64}{9}
Since \frac{54}{9} and \frac{64}{9} have the same denominator, add them by adding their numerators.
\frac{76}{3}o=\frac{118}{9}
Add 54 and 64 to get 118.
o=\frac{118}{9}\times \frac{3}{76}
Multiply both sides by \frac{3}{76}, the reciprocal of \frac{76}{3}.
o=\frac{118\times 3}{9\times 76}
Multiply \frac{118}{9} times \frac{3}{76} by multiplying numerator times numerator and denominator times denominator.
o=\frac{354}{684}
Do the multiplications in the fraction \frac{118\times 3}{9\times 76}.
o=\frac{59}{114}
Reduce the fraction \frac{354}{684} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}