Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{10+2}{5}+\frac{\frac{3\times 4+3}{4}}{\frac{16}{21}+3-\frac{\frac{1}{3}}{\frac{2\times 2+1}{2}}\times \frac{3}{4}}
Multiply 2 and 5 to get 10.
\frac{12}{5}+\frac{\frac{3\times 4+3}{4}}{\frac{16}{21}+3-\frac{\frac{1}{3}}{\frac{2\times 2+1}{2}}\times \frac{3}{4}}
Add 10 and 2 to get 12.
\frac{12}{5}+\frac{\frac{12+3}{4}}{\frac{16}{21}+3-\frac{\frac{1}{3}}{\frac{2\times 2+1}{2}}\times \frac{3}{4}}
Multiply 3 and 4 to get 12.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{\frac{1}{3}}{\frac{2\times 2+1}{2}}\times \frac{3}{4}}
Add 12 and 3 to get 15.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{2}{3\left(2\times 2+1\right)}\times \frac{3}{4}}
Divide \frac{1}{3} by \frac{2\times 2+1}{2} by multiplying \frac{1}{3} by the reciprocal of \frac{2\times 2+1}{2}.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{2}{3\left(4+1\right)}\times \frac{3}{4}}
Multiply 2 and 2 to get 4.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{2}{3\times 5}\times \frac{3}{4}}
Add 4 and 1 to get 5.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{2}{15}\times \frac{3}{4}}
Multiply 3 and 5 to get 15.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{2\times 3}{15\times 4}}
Multiply \frac{2}{15} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{6}{60}}
Do the multiplications in the fraction \frac{2\times 3}{15\times 4}.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{1}{10}}
Reduce the fraction \frac{6}{60} to lowest terms by extracting and canceling out 6.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{30}{10}-\frac{1}{10}}
Convert 3 to fraction \frac{30}{10}.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{30-1}{10}}
Since \frac{30}{10} and \frac{1}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{29}{10}}
Subtract 1 from 30 to get 29.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{160}{210}+\frac{609}{210}}
Least common multiple of 21 and 10 is 210. Convert \frac{16}{21} and \frac{29}{10} to fractions with denominator 210.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{160+609}{210}}
Since \frac{160}{210} and \frac{609}{210} have the same denominator, add them by adding their numerators.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{769}{210}}
Add 160 and 609 to get 769.
\frac{12}{5}+\frac{15}{4}\times \frac{210}{769}
Divide \frac{15}{4} by \frac{769}{210} by multiplying \frac{15}{4} by the reciprocal of \frac{769}{210}.
\frac{12}{5}+\frac{15\times 210}{4\times 769}
Multiply \frac{15}{4} times \frac{210}{769} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}+\frac{3150}{3076}
Do the multiplications in the fraction \frac{15\times 210}{4\times 769}.
\frac{12}{5}+\frac{1575}{1538}
Reduce the fraction \frac{3150}{3076} to lowest terms by extracting and canceling out 2.
\frac{18456}{7690}+\frac{7875}{7690}
Least common multiple of 5 and 1538 is 7690. Convert \frac{12}{5} and \frac{1575}{1538} to fractions with denominator 7690.
\frac{18456+7875}{7690}
Since \frac{18456}{7690} and \frac{7875}{7690} have the same denominator, add them by adding their numerators.
\frac{26331}{7690}
Add 18456 and 7875 to get 26331.