Evaluate
\frac{26331}{7690}\approx 3.424057217
Factor
\frac{3 \cdot 67 \cdot 131}{2 \cdot 5 \cdot 769} = 3\frac{3261}{7690} = 3.4240572171651493
Share
Copied to clipboard
\frac{10+2}{5}+\frac{\frac{3\times 4+3}{4}}{\frac{16}{21}+3-\frac{\frac{1}{3}}{\frac{2\times 2+1}{2}}\times \frac{3}{4}}
Multiply 2 and 5 to get 10.
\frac{12}{5}+\frac{\frac{3\times 4+3}{4}}{\frac{16}{21}+3-\frac{\frac{1}{3}}{\frac{2\times 2+1}{2}}\times \frac{3}{4}}
Add 10 and 2 to get 12.
\frac{12}{5}+\frac{\frac{12+3}{4}}{\frac{16}{21}+3-\frac{\frac{1}{3}}{\frac{2\times 2+1}{2}}\times \frac{3}{4}}
Multiply 3 and 4 to get 12.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{\frac{1}{3}}{\frac{2\times 2+1}{2}}\times \frac{3}{4}}
Add 12 and 3 to get 15.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{2}{3\left(2\times 2+1\right)}\times \frac{3}{4}}
Divide \frac{1}{3} by \frac{2\times 2+1}{2} by multiplying \frac{1}{3} by the reciprocal of \frac{2\times 2+1}{2}.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{2}{3\left(4+1\right)}\times \frac{3}{4}}
Multiply 2 and 2 to get 4.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{2}{3\times 5}\times \frac{3}{4}}
Add 4 and 1 to get 5.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{2}{15}\times \frac{3}{4}}
Multiply 3 and 5 to get 15.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{2\times 3}{15\times 4}}
Multiply \frac{2}{15} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{6}{60}}
Do the multiplications in the fraction \frac{2\times 3}{15\times 4}.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+3-\frac{1}{10}}
Reduce the fraction \frac{6}{60} to lowest terms by extracting and canceling out 6.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{30}{10}-\frac{1}{10}}
Convert 3 to fraction \frac{30}{10}.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{30-1}{10}}
Since \frac{30}{10} and \frac{1}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{16}{21}+\frac{29}{10}}
Subtract 1 from 30 to get 29.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{160}{210}+\frac{609}{210}}
Least common multiple of 21 and 10 is 210. Convert \frac{16}{21} and \frac{29}{10} to fractions with denominator 210.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{160+609}{210}}
Since \frac{160}{210} and \frac{609}{210} have the same denominator, add them by adding their numerators.
\frac{12}{5}+\frac{\frac{15}{4}}{\frac{769}{210}}
Add 160 and 609 to get 769.
\frac{12}{5}+\frac{15}{4}\times \frac{210}{769}
Divide \frac{15}{4} by \frac{769}{210} by multiplying \frac{15}{4} by the reciprocal of \frac{769}{210}.
\frac{12}{5}+\frac{15\times 210}{4\times 769}
Multiply \frac{15}{4} times \frac{210}{769} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}+\frac{3150}{3076}
Do the multiplications in the fraction \frac{15\times 210}{4\times 769}.
\frac{12}{5}+\frac{1575}{1538}
Reduce the fraction \frac{3150}{3076} to lowest terms by extracting and canceling out 2.
\frac{18456}{7690}+\frac{7875}{7690}
Least common multiple of 5 and 1538 is 7690. Convert \frac{12}{5} and \frac{1575}{1538} to fractions with denominator 7690.
\frac{18456+7875}{7690}
Since \frac{18456}{7690} and \frac{7875}{7690} have the same denominator, add them by adding their numerators.
\frac{26331}{7690}
Add 18456 and 7875 to get 26331.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}