Evaluate
\frac{719}{120}\approx 5.991666667
Factor
\frac{719}{2 ^ {3} \cdot 3 \cdot 5} = 5\frac{119}{120} = 5.991666666666666
Quiz
Arithmetic
5 problems similar to:
2 \frac { 1 } { 8 } - 1 \frac { 1 } { 3 } + 5 \frac { 1 } { 5 }
Share
Copied to clipboard
\frac{16+1}{8}-\frac{1\times 3+1}{3}+\frac{5\times 5+1}{5}
Multiply 2 and 8 to get 16.
\frac{17}{8}-\frac{1\times 3+1}{3}+\frac{5\times 5+1}{5}
Add 16 and 1 to get 17.
\frac{17}{8}-\frac{3+1}{3}+\frac{5\times 5+1}{5}
Multiply 1 and 3 to get 3.
\frac{17}{8}-\frac{4}{3}+\frac{5\times 5+1}{5}
Add 3 and 1 to get 4.
\frac{51}{24}-\frac{32}{24}+\frac{5\times 5+1}{5}
Least common multiple of 8 and 3 is 24. Convert \frac{17}{8} and \frac{4}{3} to fractions with denominator 24.
\frac{51-32}{24}+\frac{5\times 5+1}{5}
Since \frac{51}{24} and \frac{32}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{19}{24}+\frac{5\times 5+1}{5}
Subtract 32 from 51 to get 19.
\frac{19}{24}+\frac{25+1}{5}
Multiply 5 and 5 to get 25.
\frac{19}{24}+\frac{26}{5}
Add 25 and 1 to get 26.
\frac{95}{120}+\frac{624}{120}
Least common multiple of 24 and 5 is 120. Convert \frac{19}{24} and \frac{26}{5} to fractions with denominator 120.
\frac{95+624}{120}
Since \frac{95}{120} and \frac{624}{120} have the same denominator, add them by adding their numerators.
\frac{719}{120}
Add 95 and 624 to get 719.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}