Evaluate
\frac{17}{24}\approx 0.708333333
Factor
\frac{17}{2 ^ {3} \cdot 3} = 0.7083333333333334
Share
Copied to clipboard
\frac{16+1}{8}+\frac{1}{6}\times \frac{3}{2}-\frac{1\times 3+2}{3}
Multiply 2 and 8 to get 16.
\frac{17}{8}+\frac{1}{6}\times \frac{3}{2}-\frac{1\times 3+2}{3}
Add 16 and 1 to get 17.
\frac{17}{8}+\frac{1\times 3}{6\times 2}-\frac{1\times 3+2}{3}
Multiply \frac{1}{6} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{17}{8}+\frac{3}{12}-\frac{1\times 3+2}{3}
Do the multiplications in the fraction \frac{1\times 3}{6\times 2}.
\frac{17}{8}+\frac{1}{4}-\frac{1\times 3+2}{3}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{17}{8}+\frac{2}{8}-\frac{1\times 3+2}{3}
Least common multiple of 8 and 4 is 8. Convert \frac{17}{8} and \frac{1}{4} to fractions with denominator 8.
\frac{17+2}{8}-\frac{1\times 3+2}{3}
Since \frac{17}{8} and \frac{2}{8} have the same denominator, add them by adding their numerators.
\frac{19}{8}-\frac{1\times 3+2}{3}
Add 17 and 2 to get 19.
\frac{19}{8}-\frac{3+2}{3}
Multiply 1 and 3 to get 3.
\frac{19}{8}-\frac{5}{3}
Add 3 and 2 to get 5.
\frac{57}{24}-\frac{40}{24}
Least common multiple of 8 and 3 is 24. Convert \frac{19}{8} and \frac{5}{3} to fractions with denominator 24.
\frac{57-40}{24}
Since \frac{57}{24} and \frac{40}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{24}
Subtract 40 from 57 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}