Solve for x
x = \frac{95}{16} = 5\frac{15}{16} = 5.9375
Graph
Share
Copied to clipboard
8\left(2\times 6+1\right)-16\left(4\times 3+2\right)+48x=3\left(3\times 16+7\right)
Multiply both sides of the equation by 48, the least common multiple of 6,3,16.
8\left(12+1\right)-16\left(4\times 3+2\right)+48x=3\left(3\times 16+7\right)
Multiply 2 and 6 to get 12.
8\times 13-16\left(4\times 3+2\right)+48x=3\left(3\times 16+7\right)
Add 12 and 1 to get 13.
104-16\left(4\times 3+2\right)+48x=3\left(3\times 16+7\right)
Multiply 8 and 13 to get 104.
104-16\left(12+2\right)+48x=3\left(3\times 16+7\right)
Multiply 4 and 3 to get 12.
104-16\times 14+48x=3\left(3\times 16+7\right)
Add 12 and 2 to get 14.
104-224+48x=3\left(3\times 16+7\right)
Multiply -16 and 14 to get -224.
-120+48x=3\left(3\times 16+7\right)
Subtract 224 from 104 to get -120.
-120+48x=3\left(48+7\right)
Multiply 3 and 16 to get 48.
-120+48x=3\times 55
Add 48 and 7 to get 55.
-120+48x=165
Multiply 3 and 55 to get 165.
48x=165+120
Add 120 to both sides.
48x=285
Add 165 and 120 to get 285.
x=\frac{285}{48}
Divide both sides by 48.
x=\frac{95}{16}
Reduce the fraction \frac{285}{48} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}