Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{12+1}{6}+\frac{\frac{3\times 5+3}{5}}{\frac{1\times 8+1}{8}}
Multiply 2 and 6 to get 12.
\frac{13}{6}+\frac{\frac{3\times 5+3}{5}}{\frac{1\times 8+1}{8}}
Add 12 and 1 to get 13.
\frac{13}{6}+\frac{\left(3\times 5+3\right)\times 8}{5\left(1\times 8+1\right)}
Divide \frac{3\times 5+3}{5} by \frac{1\times 8+1}{8} by multiplying \frac{3\times 5+3}{5} by the reciprocal of \frac{1\times 8+1}{8}.
\frac{13}{6}+\frac{\left(15+3\right)\times 8}{5\left(1\times 8+1\right)}
Multiply 3 and 5 to get 15.
\frac{13}{6}+\frac{18\times 8}{5\left(1\times 8+1\right)}
Add 15 and 3 to get 18.
\frac{13}{6}+\frac{144}{5\left(1\times 8+1\right)}
Multiply 18 and 8 to get 144.
\frac{13}{6}+\frac{144}{5\left(8+1\right)}
Multiply 1 and 8 to get 8.
\frac{13}{6}+\frac{144}{5\times 9}
Add 8 and 1 to get 9.
\frac{13}{6}+\frac{144}{45}
Multiply 5 and 9 to get 45.
\frac{13}{6}+\frac{16}{5}
Reduce the fraction \frac{144}{45} to lowest terms by extracting and canceling out 9.
\frac{65}{30}+\frac{96}{30}
Least common multiple of 6 and 5 is 30. Convert \frac{13}{6} and \frac{16}{5} to fractions with denominator 30.
\frac{65+96}{30}
Since \frac{65}{30} and \frac{96}{30} have the same denominator, add them by adding their numerators.
\frac{161}{30}
Add 65 and 96 to get 161.