Evaluate
\frac{161}{30}\approx 5.366666667
Factor
\frac{7 \cdot 23}{2 \cdot 3 \cdot 5} = 5\frac{11}{30} = 5.366666666666666
Share
Copied to clipboard
\frac{12+1}{6}+\frac{\frac{3\times 5+3}{5}}{\frac{1\times 8+1}{8}}
Multiply 2 and 6 to get 12.
\frac{13}{6}+\frac{\frac{3\times 5+3}{5}}{\frac{1\times 8+1}{8}}
Add 12 and 1 to get 13.
\frac{13}{6}+\frac{\left(3\times 5+3\right)\times 8}{5\left(1\times 8+1\right)}
Divide \frac{3\times 5+3}{5} by \frac{1\times 8+1}{8} by multiplying \frac{3\times 5+3}{5} by the reciprocal of \frac{1\times 8+1}{8}.
\frac{13}{6}+\frac{\left(15+3\right)\times 8}{5\left(1\times 8+1\right)}
Multiply 3 and 5 to get 15.
\frac{13}{6}+\frac{18\times 8}{5\left(1\times 8+1\right)}
Add 15 and 3 to get 18.
\frac{13}{6}+\frac{144}{5\left(1\times 8+1\right)}
Multiply 18 and 8 to get 144.
\frac{13}{6}+\frac{144}{5\left(8+1\right)}
Multiply 1 and 8 to get 8.
\frac{13}{6}+\frac{144}{5\times 9}
Add 8 and 1 to get 9.
\frac{13}{6}+\frac{144}{45}
Multiply 5 and 9 to get 45.
\frac{13}{6}+\frac{16}{5}
Reduce the fraction \frac{144}{45} to lowest terms by extracting and canceling out 9.
\frac{65}{30}+\frac{96}{30}
Least common multiple of 6 and 5 is 30. Convert \frac{13}{6} and \frac{16}{5} to fractions with denominator 30.
\frac{65+96}{30}
Since \frac{65}{30} and \frac{96}{30} have the same denominator, add them by adding their numerators.
\frac{161}{30}
Add 65 and 96 to get 161.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}