Evaluate
\frac{13}{15}\approx 0.866666667
Factor
\frac{13}{3 \cdot 5} = 0.8666666666666667
Share
Copied to clipboard
\frac{10+1}{5}-\frac{1\times 4+1}{4}\times \frac{1\times 15+1}{15}
Multiply 2 and 5 to get 10.
\frac{11}{5}-\frac{1\times 4+1}{4}\times \frac{1\times 15+1}{15}
Add 10 and 1 to get 11.
\frac{11}{5}-\frac{4+1}{4}\times \frac{1\times 15+1}{15}
Multiply 1 and 4 to get 4.
\frac{11}{5}-\frac{5}{4}\times \frac{1\times 15+1}{15}
Add 4 and 1 to get 5.
\frac{11}{5}-\frac{5}{4}\times \frac{15+1}{15}
Multiply 1 and 15 to get 15.
\frac{11}{5}-\frac{5}{4}\times \frac{16}{15}
Add 15 and 1 to get 16.
\frac{11}{5}-\frac{5\times 16}{4\times 15}
Multiply \frac{5}{4} times \frac{16}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{5}-\frac{80}{60}
Do the multiplications in the fraction \frac{5\times 16}{4\times 15}.
\frac{11}{5}-\frac{4}{3}
Reduce the fraction \frac{80}{60} to lowest terms by extracting and canceling out 20.
\frac{33}{15}-\frac{20}{15}
Least common multiple of 5 and 3 is 15. Convert \frac{11}{5} and \frac{4}{3} to fractions with denominator 15.
\frac{33-20}{15}
Since \frac{33}{15} and \frac{20}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{15}
Subtract 20 from 33 to get 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}